Table of 99edo intervals: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenwolf (talk | contribs)
recat
BudjarnLambeth (talk | contribs)
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{| class="wikitable"
This table of [[99edo]] intervals assumes the 99ef val {{val| 99 157 230 278 '''343 367''' 405 421 448 481 }} as tending sharp and 99 patent val {{val| 99 157 230 278 '''342 366''' 405 421 448 481 }} as tending flat. Prime harmonics and subharmonics are labeled in '''bold'''.
 
{| class="wikitable center-1 right-2 center-3"
|-
|-
! Step
! #
! Cents
! Cents
! Five limit
! Marks
! Seven limit
! 5-limit
! Eleven limit
! 7-limit
! Thirteen limit
! 13-limit Extension<br>(Tending Sharp)
! 13-limit Extension<br>(Tending Flat)
! Higher Limit Extension
|-
| 0
| 0.00
| P1
| colspan="5" | '''1/1'''
|-
|-
| | 1
| 1
|12.121
| 12.{{overline|12}}
| | 2048/2025
|
| | 126/125
| 2048/2025
| | 99/98
| 126/125
| | 91/90
|  
|  
|  
|-
|-
| | 2
| 2
|24.242
| 24.{{overline|24}}
| | 81/80
|
| | 64/63
| 81/80
| colspan="2" | 55/54
| 64/63
| 56/55, 66/65, 78/77
| 55/54, 66/65, 78/77
| 58/57, 69/68, 70/69, 76/75
|-
|-
| | 3
| 3
|36.364
| 36.{{overline|36}}
| | 128/125
|
| colspan="3" | 49/48
| 128/125
| 49/48, 50/49
| 40/39, 45/44, 55/54
| 56/55
| 46/45, 51/50, 57/56
|-
|-
| | 4
| 4
|48.485
| 48.{{overline|48}}
| | 250/243
|
| | 36/35
| 250/243
| colspan="2" | 33/32
| 36/35
|  
| 33/32, 40/39, 45/44
| 35/34
|-
|-
| | 5
| 5
|60.606
| 60.{{overline|60}}
| | 648/625
|
| colspan="2" | 28/27
| 648/625
| | 26/25
| 28/27
| 27/26, 33/32
| 26/25
| 29/28, 30/29
|-
|-
| | 6
| 6
|72.727
| 72.{{overline|72}}
| colspan="2"| 25/24
|
| colspan="2" | 22/21
| 25/24
| 26/25
|
| 22/21, 27/26
| 24/23
|-
|-
| | 7
| 7
|84.848
| 84.{{overline|84}}
| | 256/243
| m2
| colspan="3" | 21/20
| 256/243
| 21/20
| 22/21
|
| 20/19
|-
|-
| | 8
| 8
|96.970
| 96.{{overline|96}}
| colspan="2" | 135/128
|
| | 81/77
| 135/128
| | 52/49
| "
|  
|  
| 18/17, 19/18
|-
|-
| | 9
| 9
|109.091
| 109.{{overline|09}}
| colspan="4" | 16/15
|
| 16/15
| "
|
|
| '''17/16'''
|-
|-
| | 10
| 10
|121.212
| 121.{{overline|21}}
| | 2187/2048
|
| colspan="3" | 15/14
| 2187/2048
| 15/14
| 14/13
|
| 29/27
|-
|-
| | 11
| 11
|133.333
| 133.{{overline|33}}
| colspan="3" | 27/25
|
| | 13/12
| 27/25
| "
|
| 13/12, 14/13
|
|-
|-
| | 12
| 12
|145.455
| 145.{{overline|45}}
| | 625/576
|
| colspan="3" | 49/45
| 625/576
| 49/45
| 12/11, 13/12
|
|
|-
|-
| | 13
| 13
|157.576
| 157.{{overline|57}}
| | 800/729
|
| | 35/32
| 800/729
| colspan="2" | 11/10
| 35/32
|  
| 11/10, 12/11
| 23/21
|-
|-
| | 14
| 14
|169.697
| 169.{{overline|69}}
| | 1125/1024
|
| colspan="3" | 54/49
| 1125/1024
| 54/49
| 11/10
|
| 21/19, '''32/29'''
|-
|-
| | 15
| 15
|181.818
| 181.{{overline|81}}
| colspan="4" | 10/9
|
| 10/9
| "
|
|
|
|-
|-
| | 16
| 16
|193.939
| 193.{{overline|93}}
| | 4096/3645
|
| colspan="3" | 28/25
| 4096/3645
| 28/25
|
|
| 19/17
|-
|-
| | 17
| 17
|206.061
| 206.{{overline|06}}
| colspan="4" | 9/8
| M2
| 9/8
| "
|
|
|
|-
|-
| | 18
| 18
|218.182
| 218.{{overline|18}}
| | 256/225
|
| | 245/216
| 256/225
| | 112/99
| 245/216
| | 91/80
| 25/22
|  
| 17/15
|-
|-
| | 19
| 19
|230.303
| 230.{{overline|30}}
| | 729/640
|
| colspan="3" | 8/7
| 729/640
| '''8/7'''
|
| 25/22
|
|-
|-
| | 20
| 20
|242.424
| 242.{{overline|42}}
| | 144/125
|
| | 144/125
| 144/125
| | 63/55
| "
| | 52/45
| 15/13
|  
| 23/20
|-
|-
| | 21
| 21
|254.545
| 254.{{overline|54}}
| | 125/108
|
| colspan="2" | 81/70
| 125/108
| | 15/13
| 81/70
|  
| 15/13
|
|-
|-
| | 22
| 22
|266.667
| 266.{{overline|66}}
| | 729/625
|
| colspan="3" | 7/6
| 729/625
| 7/6
|
|
|
|-
|-
| | 23
| 23
|278.788
| 278.{{overline|78}}
| colspan="2" | 75/64
|
| colspan="2" | 33/28
| 75/64
| "
|
| 33/28
| 20/17, 27/23, 34/29
|-
|-
| | 24
| 24
|290.909
| 290.{{overline|90}}
| colspan="3" | 32/27
| m3
| | 13/11
| 32/27
| "
| 13/11, 33/28
| 13/11
|
|-
|-
| | 25
| 25
|303.030
| 303.{{overline|03}}
| | 1215/1024
|
| colspan="3" | 25/21
| 1215/1024
| 25/21
|
|
| '''19/16'''
|-
|-
| | 26
| 26
|315.152
| 315.{{overline|15}}
| colspan="4" | 6/5
|
| 6/5
| "
|
|
|
|-
|-
| | 27
| 27
|327.273
| 327.{{overline|27}}
| | 3125/2592
|
| colspan="2" | 98/81
| 3125/2592
| | 91/75
| 98/81
| 40/33
|  
| 23/19, 29/24
|-
|-
| | 28
| 28
|339.394
| 339.{{overline|39}}
| | 243/200
|
| | 128/105
| 243/200
| colspan="2" | 11/9
| 128/105
|  
| 11/9, 39/32, 40/33
| 17/14, 28/23
|-
|-
| | 29
| 29
|351.515
| 351.{{overline|51}}
| | 625/512
|
| colspan="3" | 49/40
| 625/512
| 49/40, 60/49
| 11/9, '''16/13''', 27/22, 39/32
|
|
|-
|-
| | 30
| 30
|363.636
| 363.{{overline|63}}
| | 100/81
|
| | 100/81
| 100/81
| | 27/22
| "
| | 16/13
|  
| '''16/13''', 26/21, 27/22
| 21/17
|-
|-
| | 31
| 31
|375.758
| 375.{{overline|75}}
| | 3888/3125
|
| colspan="3" | 56/45
| 3888/3125
| 56/45
| 26/21
|
| 36/29
|-
|-
| | 32
| 32
|387.879
| 387.{{overline|87}}
| colspan="4" | 5/4
|
| '''5/4'''
| "
|
|
|
|-
|-
| | 33
| 33
|400
| 400.00
| | 512/405
|
| colspan="2" | 63/50
| 512/405
| | 49/39
| 63/50
|  
|  
| 24/19, 29/23
|-
|-
| | 34
| 34
|412.121
| 412.{{overline|12}}
| | 81/64
| M3
| | 80/63
| 81/64
| | 80/63
| 80/63
| | 33/26
| 14/11, 33/26
| 33/26
| 19/15
|-
|-
| | 35
| 35
|424.242
| 424.{{overline|24}}
| | 32/25
|
| | 32/25
| 32/25
| colspan="2" | 14/11
| "
|  
| 14/11
| 23/18
|-
|-
| | 36
| 36
|436.364
| 436.{{overline|36}}
| | 625/486
|
| colspan="3" | 9/7
| 625/486
| 9/7
|
|
|
|-
|-
| | 37
| 37
|448.485
| 448.{{overline|48}}
| | 162/125
|
| colspan="2" | 35/27
| 162/125
| | 13/10
| 35/27
|  
| 13/10
|
|-
|-
| | 38
| 38
|460.606
| 460.{{overline|60}}
| | 125/96
|
| | 64/49
| 125/96
| colspan="2" | 55/42
| 64/49
| 13/10
|
| 30/23
|-
|-
| | 39
| 39
|472.727
| 472.{{overline|72}}
| | 320/243
|
| colspan="3" | 21/16
| 320/243
| 21/16
|
| 33/25
| 38/29
|-
|-
| | 40
| 40
|484.848
| 484.{{overline|84}}
| | 675/512
|
| colspan="2" | 250/189
| 675/512
| | 65/49
| 250/189
| 33/25
|
|  
|-
|-
| | 41
| 41
|496.970
| 496.{{overline|96}}
| colspan="4" | 4/3
| P4
| '''4/3'''
| "
|
|
|
|-
|-
| | 42
| 42
|509.091
| 509.{{overline|09}}
| | 8192/6075
|
| | 75/56
| 8192/6075
| colspan="2" | 66/49
| 75/56
|  
|
| 51/38
|-
|-
| | 43
| 43
|521.212
| 521.{{overline|21}}
| colspan="4" | 27/20
|
| 27/20
| "
|
|
| 23/17
|-
|-
| | 44
| 44
|533.333
| 533.{{overline|33}}
| | 512/375
|
| colspan="3" | 49/36
| 512/375
| 49/36
| 15/11
|
|
|-
|-
| | 45
| 45
|545.455
| 545.{{overline|45}}
| | 1000/729
|
| | 48/35
| 1000/729
| colspan="2" | 11/8
| 48/35
|  
| '''11/8''', 15/11
|
|-
|-
| | 46
| 46
|557.576
| 557.{{overline|57}}
| | 864/625
|
| colspan="2" | 112/81
| 864/625
| | 91/66
| 112/81
| '''11/8''', 18/13
|
| 29/21, 40/29
|-
|-
| | 47
| 47
|569.697
| 569.{{overline|69}}
| colspan="3" | 25/18
|
| | 18/13
| 25/18
| "
|
| 18/13
| '''32/23'''
|-
|-
| | 48
| 48
|581.818
| 581.{{overline|81}}
| | 1024/729
| d5
| colspan="3" | 7/5
| 1024/729
| 7/5
|
|
|
|-
|-
| | 49
| 49
|593.939
| 593.{{overline|93}}
| colspan="4" | 45/32
|
| 45/32
| "
|
|
| 24/17, 38/27
|-
|-
| | 50
| 50
|606.061
| 606.{{overline|06}}
| colspan="4" | 64/45
|
| 64/45
| "
|
|
| 17/12, 27/19
|-
|-
| | 51
| 51
|618.182
| 618.{{overline|18}}
| | 729/512
| A4
| colspan="3" | 10/7
| 729/512
| 10/7
|
|
|
|-
|-
| | 52
| 52
|630.303
| 630.{{overline|30}}
| colspan="3" | 36/25
|
| | 13/9
| 36/25
| "
|
| 13/9
| '''23/16'''
|-
|-
| | 53
| 53
|642.424
| 642.{{overline|42}}
| | 625/432
|
| colspan="2" | 81/56
| 625/432
| | 75/52
| 81/56
| '''16/11'''
|
| 29/20, 42/29
|-
|-
| | 54
| 54
|654.545
| 654.{{overline|54}}
| | 729/500
|
| | 35/24
| 729/500
| colspan="2" | 16/11
| 35/24
|  
| '''16/11''', 22/15
|
|-
|-
| | 55
| 55
|666.667
| 666.{{overline|66}}
| | 375/256
|
| colspan="3" | 72/49
| 375/256
| 72/49
| 22/15
|
|
|-
|-
| | 56
| 56
|678.788
| 678.{{overline|78}}
| colspan="4" | 40/27
|
| 40/27
| "
|
|
| 34/23
|-
|-
| | 57
| 57
|690.909
| 690.{{overline|90}}
| | 6075/4096
|
| | 112/75
| 6075/4096
| colspan="2" | 49/33
| 112/75
|  
|
| 76/51
|-
|-
| | 58
| 58
|703.030
| 703.{{overline|03}}
| colspan="4" | 3/2
| P5
| '''3/2'''
| "
|
|
|
|-
|-
| | 59
| 59
|715.152
| 715.{{overline|15}}
| | 1024/675
|
| colspan="2" | 189/125
| 1024/675
| | 91/60
| 189/125
| 50/33
|
|  
|-
|-
| | 60
| 60
|727.273
| 727.{{overline|27}}
| | 243/160
|
| colspan="3" | 32/21
| 243/160
| 32/21
|
| 50/33
| 29/19
|-
|-
| | 61
| 61
|739.394
| 739.{{overline|39}}
| | 192/125
|
| colspan="3" | 49/32
| 192/125
| 49/32
| 20/13
|
| 23/15
|-
|-
| | 62
| 62
|751.515
| 751.{{overline|51}}
| | 125/81
|
| colspan="2" | 54/35
| 125/81
| | 20/13
| 54/35
|  
| 20/13
|
|-
|-
| | 63
| 63
|763.636
| 763.{{overline|63}}
| | 972/625
|
| colspan="3" | 14/9
| 972/625
| 14/9
|
|
|
|-
|-
| | 64
| 64
|775.758
| 775.{{overline|75}}
| colspan="2" | 25/16
|
| colspan="2" | 11/7
| 25/16
| "
|
| 11/7
| 36/23
|-
|-
| | 65
| 65
|787.879
| 787.{{overline|87}}
| | 128/81
| m6
| colspan="2" | 63/40
| 128/81
| | 52/33
| 63/40
| 11/7, 52/33
| 52/33
|
|-
|-
| | 66
| 66
|800
| 800.00
| | 405/256
|
| colspan="2" | 100/63
| 405/256
| | 78/49
| 100/63
|  
|  
| 27/17, 46/29
|-
|-
| | 67
| 67
|812.121
| 812.{{overline|12}}
| colspan="4" | 8/5
|
| '''8/5'''
| "
|
|
|
|-
|-
| | 68
| 68
|824.242
| 824.{{overline|24}}
| | 3125/1944
|
| colspan="3" | 45/28
| 3125/1944
| 45/28
| 21/13
|
| 29/18
|-
|-
| | 69
| 69
|836.364
| 836.{{overline|36}}
| colspan="2" | 81/50
|
| | 44/27
| 81/50
| | 13/8
| "
|
| '''13/8''', 21/13, 44/27
| 34/21
|-
|-
| | 70
| 70
|848.485
| 848.{{overline|48}}
| | 625/384
|
| colspan="3" | 49/30
| 625/384
| 49/30, 80/49
| '''13/8''', 18/11, 44/27, 64/39
|
|
|-
|-
| | 71
| 71
|860.606
| 860.{{overline|60}}
| | 400/243
|
| | 105/64
| 400/243
| colspan="2" | 18/11
| 105/64
|  
| 18/11, 33/20, 64/39
| 28/17, 23/14
|-
|-
| | 72
| 72
|872.727
| 872.{{overline|72}}
| | 3375/2048
|
| colspan="3" | 81/49
| 3375/2048
| 81/49
| 33/20
|
| 38/23, 48/29
|-
|-
| | 73
| 73
|884.848
| 884.{{overline|84}}
| colspan="4" | 5/3
|
| 5/3
| "
|
|
|
|-
|-
| | 74
| 74
|896.970
| 896.{{overline|96}}
| | 2048/1215
|
| colspan="3" | 42/25
| 2048/1215
| 42/25
|
|
| '''32/19'''
|-
|-
| | 75
| 75
|909.091
| 909.{{overline|09}}
| colspan="3" | 27/16
| M6
| | 22/13
| 27/16
| "
| 22/13, 56/33
| 22/13
|
|-
|-
| | 76
| 76
|921.212
| 921.{{overline|21}}
| colspan="2" | 128/75
|
| colspan="2" | 56/33
| 128/75
| "
|
| 56/33
| 17/10, 29/17, 46/27
|-
|-
| | 77
| 77
|933.333
| 933.{{overline|33}}
| | 1250/729
|
| colspan="3" | 12/7
| 1250/729
| 12/7
|
|
|
|-
|-
| | 78
| 78
|945.455
| 945.{{overline|45}}
| | 216/125
|
| colspan="2" | 140/81
| 216/125
| | 26/15
| 140/81
|  
| 26/15
|
|-
|-
| | 79
| 79
|957.576
| 957.{{overline|57}}
| colspan="2" | 125/72
|
| | 110/63
| 125/72
| | 45/26
| 26/15
|  
|  
| 40/23
|-
|-
| | 80
| 80
|969.697
| 969.{{overline|69}}
| | 1280/729
|
| colspan="3" | 7/4
| 1280/729
| '''7/4'''
|
| 44/25
|
|-
|-
| | 81
| 81
|981.818
| 981.{{overline|81}}
| colspan="2" | 225/128
|
| colspan="2" | 99/56
| 225/128
| "
| 44/25
|
| 30/17
|-
|-
| | 82
| 82
|993.939
| 993.{{overline|93}}
| colspan="4" | 16/9
| m7
| 16/9
| "
|
|
|
|-
|-
| | 83
| 83
|1006.061
| 1006.{{overline|06}}
| | 3645/2048
|
| colspan="3" | 25/14
| 3645/2048
| 25/14
|
|
| 34/19
|-
|-
| | 84
| 84
|1018.182
| 1018.{{overline|18}}
| colspan="4" | 9/5
|
| 9/5
| "
|
|
|
|-
|-
| | 85
| 85
|1030.303
| 1030.{{overline|30}}
| | 2048/1125
|
| colspan="3" | 49/27
| 2048/1125
| 49/27
| 20/11
|
| '''29/16'''
|-
|-
| | 86
| 86
|1042.424
| 1042.{{overline|42}}
| | 729/400
|
| | 64/35
| 729/400
| colspan="2" | 11/6
| 64/35
|  
| 11/6, 20/11
| 42/23
|-
|-
| | 87
| 87
|1054.545
| 1054.{{overline|54}}
| | 1152/625
|
| colspan="3" | 90/49
| 1152/625
| 90/49
| 11/6, 24/13
|
|
|-
|-
| | 88
| 88
|1066.667
| 1066.{{overline|66}}
| colspan="3" | 50/27
|
| | 13/7
| 50/27
| "
|
| 13/7, 24/13
|
|-
|-
| | 89
| 89
|1078.788
| 1078.{{overline|78}}
| | 4096/2187
|
| colspan="3" | 28/15
| 4096/2187
| 28/15
| 13/7
|
| 54/29
|-
|-
| | 90
| 90
|1090.909
| 1090.{{overline|90}}
| colspan="4" | 15/8
|
| 15/8
| "
|
|
| '''32/17'''
|-
|-
| | 91
| 91
|1103.030
| 1103.{{overline|03}}
| | 256/135
|
| | 189/100
| 256/135
| | 154/81
| 189/100
| | 49/26
|  
|  
| 17/9, 36/19
|-
|-
| | 92
| 92
|1115.152
| 1115.{{overline|15}}
| | 243/128
| M7
| colspan="3" | 40/21
| 243/128
| 40/21
|
|
| 19/10
|-
|-
| | 93
| 93
|1127.273
| 1127.{{overline|27}}
| colspan="2" | 48/25
|
| colspan="2" | 21/11
| 48/25
| "
| 25/13
| 52/27
| 23/12
|-
|-
| | 94
| 94
|1139.394
| 1139.{{overline|39}}
| | 625/324
|
| colspan="2" | 27/14
| 625/324
| | 25/13
| 27/14
| 52/27, 64/33
| 25/13
| 29/15, 56/29
|-
|-
| | 95
| 95
|1151.515
| 1151.{{overline|51}}
| | 243/125
|
| colspan="3" | 35/18
| 243/125
| 35/18
|
| 39/20, 64/33, 88/45
|
|-
|-
| | 96
| 96
|1163.636
| 1163.{{overline|63}}
| | 125/64
|
| colspan="3" | 49/25
| 125/64
| 49/25, 96/49
| 39/20, 88/45, 108/55
| 55/28
| 45/23, 100/51, 112/57
|-
|-
| | 97
| 97
|1175.758
| 1175.{{overline|75}}
| | 160/81
|
| colspan="3" | 63/32
| 160/81
| 63/32
| 55/28, 65/33, 77/39
| 65/33, 77/39, 108/55
| 57/29, 69/35, 75/38, 136/69
|-
|-
| | 98
| 98
|1187.879
| 1187.{{overline|87}}
| | 2025/1024
|
| colspan="3" | 125/63
| 2025/1024
| 125/63
|
|
|
|-
|-
| | 99
| 99
|1200
| 1200.00
| colspan="4" | 2/1
| P8
| colspan="5" | '''2/1'''
|}
|}


[[Category:Interval collection]]
[[Category:Tables of edo intervals]]
[[Category:99edo]]
[[Category:99edo]]
[[Category:5-limit]]
[[Category:5-limit]]
[[Category:7-limit]]
[[Category:7-limit]]

Latest revision as of 10:56, 21 January 2024

This table of 99edo intervals assumes the 99ef val 99 157 230 278 343 367 405 421 448 481] as tending sharp and 99 patent val 99 157 230 278 342 366 405 421 448 481] as tending flat. Prime harmonics and subharmonics are labeled in bold.

# Cents Marks 5-limit 7-limit 13-limit Extension
(Tending Sharp)
13-limit Extension
(Tending Flat)
Higher Limit Extension
0 0.00 P1 1/1
1 12.12 2048/2025 126/125
2 24.24 81/80 64/63 56/55, 66/65, 78/77 55/54, 66/65, 78/77 58/57, 69/68, 70/69, 76/75
3 36.36 128/125 49/48, 50/49 40/39, 45/44, 55/54 56/55 46/45, 51/50, 57/56
4 48.48 250/243 36/35 33/32, 40/39, 45/44 35/34
5 60.60 648/625 28/27 27/26, 33/32 26/25 29/28, 30/29
6 72.72 25/24 26/25 22/21, 27/26 24/23
7 84.84 m2 256/243 21/20 22/21 20/19
8 96.96 135/128 " 18/17, 19/18
9 109.09 16/15 " 17/16
10 121.21 2187/2048 15/14 14/13 29/27
11 133.33 27/25 " 13/12, 14/13
12 145.45 625/576 49/45 12/11, 13/12
13 157.57 800/729 35/32 11/10, 12/11 23/21
14 169.69 1125/1024 54/49 11/10 21/19, 32/29
15 181.81 10/9 "
16 193.93 4096/3645 28/25 19/17
17 206.06 M2 9/8 "
18 218.18 256/225 245/216 25/22 17/15
19 230.30 729/640 8/7 25/22
20 242.42 144/125 " 15/13 23/20
21 254.54 125/108 81/70 15/13
22 266.66 729/625 7/6
23 278.78 75/64 " 33/28 20/17, 27/23, 34/29
24 290.90 m3 32/27 " 13/11, 33/28 13/11
25 303.03 1215/1024 25/21 19/16
26 315.15 6/5 "
27 327.27 3125/2592 98/81 40/33 23/19, 29/24
28 339.39 243/200 128/105 11/9, 39/32, 40/33 17/14, 28/23
29 351.51 625/512 49/40, 60/49 11/9, 16/13, 27/22, 39/32
30 363.63 100/81 " 16/13, 26/21, 27/22 21/17
31 375.75 3888/3125 56/45 26/21 36/29
32 387.87 5/4 "
33 400.00 512/405 63/50 24/19, 29/23
34 412.12 M3 81/64 80/63 14/11, 33/26 33/26 19/15
35 424.24 32/25 " 14/11 23/18
36 436.36 625/486 9/7
37 448.48 162/125 35/27 13/10
38 460.60 125/96 64/49 13/10 30/23
39 472.72 320/243 21/16 33/25 38/29
40 484.84 675/512 250/189 33/25
41 496.96 P4 4/3 "
42 509.09 8192/6075 75/56 51/38
43 521.21 27/20 " 23/17
44 533.33 512/375 49/36 15/11
45 545.45 1000/729 48/35 11/8, 15/11
46 557.57 864/625 112/81 11/8, 18/13 29/21, 40/29
47 569.69 25/18 " 18/13 32/23
48 581.81 d5 1024/729 7/5
49 593.93 45/32 " 24/17, 38/27
50 606.06 64/45 " 17/12, 27/19
51 618.18 A4 729/512 10/7
52 630.30 36/25 " 13/9 23/16
53 642.42 625/432 81/56 16/11 29/20, 42/29
54 654.54 729/500 35/24 16/11, 22/15
55 666.66 375/256 72/49 22/15
56 678.78 40/27 " 34/23
57 690.90 6075/4096 112/75 76/51
58 703.03 P5 3/2 "
59 715.15 1024/675 189/125 50/33
60 727.27 243/160 32/21 50/33 29/19
61 739.39 192/125 49/32 20/13 23/15
62 751.51 125/81 54/35 20/13
63 763.63 972/625 14/9
64 775.75 25/16 " 11/7 36/23
65 787.87 m6 128/81 63/40 11/7, 52/33 52/33
66 800.00 405/256 100/63 27/17, 46/29
67 812.12 8/5 "
68 824.24 3125/1944 45/28 21/13 29/18
69 836.36 81/50 " 13/8, 21/13, 44/27 34/21
70 848.48 625/384 49/30, 80/49 13/8, 18/11, 44/27, 64/39
71 860.60 400/243 105/64 18/11, 33/20, 64/39 28/17, 23/14
72 872.72 3375/2048 81/49 33/20 38/23, 48/29
73 884.84 5/3 "
74 896.96 2048/1215 42/25 32/19
75 909.09 M6 27/16 " 22/13, 56/33 22/13
76 921.21 128/75 " 56/33 17/10, 29/17, 46/27
77 933.33 1250/729 12/7
78 945.45 216/125 140/81 26/15
79 957.57 125/72 26/15 40/23
80 969.69 1280/729 7/4 44/25
81 981.81 225/128 " 44/25 30/17
82 993.93 m7 16/9 "
83 1006.06 3645/2048 25/14 34/19
84 1018.18 9/5 "
85 1030.30 2048/1125 49/27 20/11 29/16
86 1042.42 729/400 64/35 11/6, 20/11 42/23
87 1054.54 1152/625 90/49 11/6, 24/13
88 1066.66 50/27 " 13/7, 24/13
89 1078.78 4096/2187 28/15 13/7 54/29
90 1090.90 15/8 " 32/17
91 1103.03 256/135 189/100 17/9, 36/19
92 1115.15 M7 243/128 40/21 19/10
93 1127.27 48/25 " 25/13 52/27 23/12
94 1139.39 625/324 27/14 52/27, 64/33 25/13 29/15, 56/29
95 1151.51 243/125 35/18 39/20, 64/33, 88/45
96 1163.63 125/64 49/25, 96/49 39/20, 88/45, 108/55 55/28 45/23, 100/51, 112/57
97 1175.75 160/81 63/32 55/28, 65/33, 77/39 65/33, 77/39, 108/55 57/29, 69/35, 75/38, 136/69
98 1187.87 2025/1024 125/63
99 1200.00 P8 2/1