User:BudjarnLambeth/Sandbox2: Difference between revisions
(69 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Quick link | |||
[[User:BudjarnLambeth/Draft related tunings section]] | |||
= Title1 = | = Title1 = | ||
== Octave stretch or compression == | == Octave stretch or compression == | ||
{{main|23edo and octave stretching}} | |||
23edo is not typically taken seriously as a tuning except by those interested in extreme [[xenharmony]]. Its fifths are significantly flat, and is neighbors [[22edo]] and [[24edo]] generally get more attention. | |||
However, when using a slightly [[stretched tuning|stretched octave]] of around 1216 [[cents]], 23edo looks much better, and it approximates the [[perfect fifth]] (and various other [[interval]]s involving the 5th, 7th, 11th, and 13th [[harmonic]]s) to within 18 cents or so. If we can tolerate errors around this size in [[12edo]], we can probably tolerate them in stretched-23 as well. | |||
Stretched 23edo is one of the best tunings to use for exploring the [[antidiatonic]] scale since its fifth is more [[consonant]] and less "[[Wolf interval|wolfish]]" than fifths in other [[pelogic family]] temperaments. | |||
What follows is a comparison of stretched- and compressed-octave 23edo tunings. | |||
; [[zpi|86zpi]] | |||
* Step size: 51.653{{c}}, octave size: 1188.0{{c}} | |||
Compressing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this. | |||
{{Harmonics in cet|51.653|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}} | |||
{{Harmonics in cet|51.653|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}} | |||
; [[60ed6]] | |||
* Step size: 51.700{{c}}, octave size: 1189.1{{c}} | |||
Compressing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 60ed6 does this. So does the tuning [[equal tuning|105ed23]] whose octave is identical within 0.01{{c}}. | |||
{{Harmonics in equal|60|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | |||
{{Harmonics in equal|60|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} | |||
; [[zpi|85zpi]] | |||
* Step size: 52.114{{c}}, octave size: 1198.6{{c}} | |||
Compressing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 85zpi does this. So does the tuning [[ed9|73ed9]] whose octave is identical within 0.02{{c}}. | |||
{{Harmonics in cet|52.114|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}} | |||
{{Harmonics in cet|52.114|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}} | |||
; 23edo | |||
* Step size: NNN{{c}}, octave size: 1200.0{{c}} | |||
Pure-octaves EDONAME approximates all harmonics up to 16 within NNN{{c}}. | |||
{{Harmonics in equal|23|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONAME}} | |||
{{Harmonics in equal|23|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONAME (continued)}} | |||
; [[ | ; [[WE|23et, 13-limit WE tuning]] | ||
* Step size: | * Step size: 52.237{{c}}, octave size: 1201.5{{c}} | ||
Stretching the octave of | Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its SUBGROUP WE tuning and SUBGROUP [[TE]] tuning both do this. | ||
{{Harmonics in cet| | {{Harmonics in cet|52.237|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning}} | ||
{{Harmonics in cet| | {{Harmonics in cet|52.237|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)}} | ||
; [[WE| | ; [[WE|23et, 2.3.5.13 WE tuning]] | ||
* Step size: | * Step size: 52.447{{c}}, octave size: 1206.3{{c}} | ||
Stretching the octave of | Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its SUBGROUP WE tuning and SUBGROUP [[TE]] tuning both do this. So does the tuning [[ed10|76ed10]] whose octave is identical within 0.01{{c}}. | ||
{{Harmonics in cet| | {{Harmonics in cet|52.447|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning}} | ||
{{Harmonics in cet| | {{Harmonics in cet|52.447|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)}} | ||
; | ; [[59ed6]] | ||
* Step size: | * Step size: 52.575{{c}}, octave size: 1209.2{{c}} | ||
Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 59ed6 does this. So does the tuning [[53ed5]] whose octave is identical within 0.01{{c}}. | |||
{{Harmonics in equal| | {{Harmonics in equal|59|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | ||
{{Harmonics in equal| | {{Harmonics in equal|59|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} | ||
; [[ | ; [[zpi|84zpi]] | ||
* Step size: | * Step size: 52.615{{c}}, octave size: 1210.1{{c}} | ||
Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this. | |||
{{Harmonics in cet| | {{Harmonics in cet|52.615|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}} | ||
{{Harmonics in cet| | {{Harmonics in cet|52.615|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}} | ||
; [[ | ; [[36edt]] | ||
* Step size: | * Step size: 52.832{{c}}, octave size: 1215.1{{c}} | ||
Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. | |||
{{Harmonics in | {{Harmonics in equal|36|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | ||
{{Harmonics in | {{Harmonics in equal|36|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} | ||
; [[ | ; [[84ed13]] | ||
* Step size: | * Step size: 52.863{{c}}, octave size: 1215.9{{c}} | ||
Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. | |||
{{Harmonics in equal| | {{Harmonics in equal|84|13|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | ||
{{Harmonics in equal| | {{Harmonics in equal|84|13|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} | ||
= Title2 = | = Title2 = | ||
=== Lab === | |||
Place holder | |||
<br><br><br><br><br> | |||
{{harmonics in cet | 300 | intervals=prime}} | |||
{{harmonics in equal | 140 | 12 | 1 | intervals=prime}} | |||
=== Possible tunings to be used on each page === | === Possible tunings to be used on each page === | ||
You can remove some of these or add more that aren't listed here; this section is pretty much just brainstorming. | You can remove some of these or add more that aren't listed here; this section is pretty much just brainstorming. | ||
Line 48: | Line 94: | ||
; High-priority | ; High-priority | ||
60edo (narrow down edonoi & ZPIs) | 60edo (narrow down edonoi & ZPIs) | ||
* 35edf | * 35edf | ||
* 139ed5 | * 139ed5 | ||
* 301zpi (20.027c) | * 301zpi (20.027c) | ||
* 95edt | |||
* 13-limit WE (20.013c) (155ed6 has octaves only 0.02{{c}} different) | |||
* 215ed12 | |||
* 302zpi (19.962c) | * 302zpi (19.962c) | ||
* 208ed11 (ideal for catnip temperament) | |||
* 303zpi (19.913c) | * 303zpi (19.913c) | ||
32edo | |||
* 13-limit WE (37.481c) | |||
* 11-limit WE (37.453c) | |||
* 90ed7 (optimal for dual-5) (133zpi's octave only differs by 0.4{{c}}) | |||
* | |||
* | |||
* | |||
* 51edt | * 51edt | ||
* 134zpi (37.176c) | |||
* 75ed5 | * 75ed5 | ||
33edo | 33edo | ||
* 76ed5 | * 76ed5 | ||
* 92ed7 | * 92ed7 (137zpi's octave differs by only 0.3{{c}}) | ||
* | * 52ed13 | ||
* 114ed11 | * 114ed11 | ||
* 122ed13 | * 138zpi (36.394c) (122ed13's octave differs by only 0.1{{c}}) | ||
* | * 13-limit WE (36.357c) | ||
* | * 93ed7 (optimised for dual-fifths) | ||
* 77ed5 | * 77ed5 (139zpi's octave differs by only 0.2{{c}}) | ||
* 123ed13 | * 123ed13 / 1ed47/46 (identical within <0.1{{c}}) | ||
* 115ed11 | * 115ed11 | ||
39edo | 39edo | ||
* | * 171zpi (30.973c) (optimised for dual-fifths use) | ||
* 13-limit WE (30.757c) (octave of 135ed11 differs by only 0.2{{c}}) | |||
* 101ed6 (octave of 172zpi differs by only 0.4{{c}}) | |||
* 173zpi (30.672c) (octave of 62edt differs by only 0.2{{c}}) | |||
* 110ed7 (octave of 145ed13 differs by only 0.1{{c}}) | |||
* 13-limit WE (30.757c) | * 91ed5 | ||
* | |||
* | |||
* | |||
42edo | 42edo | ||
* | * 108ed6 (octave is identical to 97ed5 within 0.1{{c}}) | ||
* | * 189zpi (28.689c) | ||
* | * 150ed12 | ||
* | * 145ed11 | ||
* | ''190zpi's octave is within 0.05{{c}} of pure-octaves 42edo'' | ||
* 118ed7 | |||
* 13-limit WE (28.534c) | * 13-limit WE (28.534c) | ||
* | * 151ed12 (octave is identical to 7-limit WE within 0.3{{c}}) | ||
* | * 109ed6 | ||
* 191zpi (28.444c) | * 191zpi (28.444c) | ||
* 67edt | |||
45edo | 45edo | ||
* | * 209zpi (26.550) | ||
* | * 13-limit WE (26.695c) | ||
* 161ed12 | |||
* 116ed6 (octave identical to 126ed7 within 0.1{{c}}) | |||
* 7-limit WE (26.745c) | * 7-limit WE (26.745c) | ||
* 207zpi (26.762) | * 207zpi (26.762) | ||
* | * 71edt (octave identical to 155ed11 within 0.3{{c}}) | ||
54edo ( | 54edo | ||
* | * 139ed6 (octave is identical to 262zpi within 0.2{{c}}) | ||
* | * 151ed7 | ||
* 193ed12 | |||
* 263zpi (22.243c) | |||
* 13-limit WE (22.198c) (octave is identical to 187ed11 within 0.1{{c}}) | |||
* 264zpi (22.175c) (octave is identical to 194ed12 within 0.01{{c}}) | |||
* 152ed7 | * 152ed7 | ||
* | * 140ed6 | ||
* | * 126ed5 (octave is identical to 86edt within 0.1{{c}}) | ||
59edo | 59edo | ||
* | * 152ed6 | ||
* 294zpi (20.399c) | * 294zpi (20.399c) | ||
* 211ed12 | |||
* 295zpi (20.342c) | * 295zpi (20.342c) | ||
''pure octaves 59edo octave is identical to 137ed5 within 0.05{{c}}'' | |||
* 13-limit WE (20.320c) | |||
* 7-limit WE (20.301c) | |||
* 166ed7 | |||
* 212ed12 | |||
* 296zpi (20.282c) | * 296zpi (20.282c) | ||
* | * 153ed6 | ||
64edo ( | 64edo | ||
* | * 179ed7 (octave is identical to 326zpi within 0.3{{c}}) | ||
* | * 165ed6 | ||
* | * 229ed12 (octave is identical to 221ed11 within 0.1{{c}}) | ||
* 327zpi (18.767c) | |||
* 11-limit WE (18.755c) | * 11-limit WE (18.755c) | ||
''pure octaves 64edo (octave is identical to 13-limit WE within 0.13{{c}}'' | |||
* 328zpi (18.721c) | * 328zpi (18.721c) | ||
* | * 180ed7 | ||
* | * 230ed12 | ||
* 149ed5 | |||
; Medium priority | |||
118edo (choose ZPIS) | |||
{{harmonics in equal | 118 | 2 | 1 | intervals=integer | columns=12}} | |||
* 187edt | |||
* 69edf | |||
* 13-limit WE (10.171c) | |||
* Best nearby ZPI(s) | |||
13edo | |||
{{harmonics in equal | 13 | 2 | 1 | intervals=integer | columns=12}} | |||
* Main: "13edo and optimal octave stretching" | |||
* 2.5.11.13 WE (92.483c) | |||
* 2.5.7.13 WE (92.804c) | |||
* 2.3 WE (91.405c) (good for opposite 7 mapping) | |||
* 38zpi (92.531c) | |||
103edo (narrow down edonoi, choose ZPIS) | 103edo (narrow down edonoi, choose ZPIS) | ||
{{harmonics in equal | 103 | 2 | 1 | intervals=integer | columns=12}} | |||
* 163edt | * 163edt | ||
* 239ed5 | * 239ed5 | ||
* | * 266ed6 | ||
* 289ed7 | * 289ed7 | ||
* 356ed11 | * 356ed11 | ||
* | * 369ed12 | ||
* 381ed13 | * 381ed13 | ||
* 421ed17 | * 421ed17 | ||
Line 206: | Line 224: | ||
111edo (choose ZPIS) | 111edo (choose ZPIS) | ||
{{harmonics in equal | 111 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
* 1-2 WE tunings | * 1-2 WE tunings | ||
* Best nearby ZPI(s) | * Best nearby ZPI(s) | ||
Line 287: | Line 300: | ||
25edo | 25edo | ||
{{harmonics in equal | 25 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 293: | Line 307: | ||
26edo | 26edo | ||
{{harmonics in equal | 26 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 299: | Line 314: | ||
29edo | 29edo | ||
{{harmonics in equal | 29 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 305: | Line 321: | ||
30edo | 30edo | ||
{{harmonics in equal | 30 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 311: | Line 328: | ||
34edo | 34edo | ||
{{harmonics in equal | 34 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 317: | Line 335: | ||
35edo | 35edo | ||
{{harmonics in equal | 35 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 323: | Line 342: | ||
36edo | 36edo | ||
{{harmonics in equal | 36 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 329: | Line 349: | ||
37edo | 37edo | ||
{{harmonics in equal | 37 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 334: | Line 355: | ||
* Best nearby ZPI(s) | * Best nearby ZPI(s) | ||
9edo | |||
{{harmonics in equal | 9 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 340: | Line 362: | ||
* Best nearby ZPI(s) | * Best nearby ZPI(s) | ||
10edo | |||
{{harmonics in equal | 10 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 346: | Line 369: | ||
* Best nearby ZPI(s) | * Best nearby ZPI(s) | ||
11edo | |||
{{harmonics in equal | 11 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 352: | Line 376: | ||
* Best nearby ZPI(s) | * Best nearby ZPI(s) | ||
15edo | |||
{{harmonics in equal | 15 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 358: | Line 383: | ||
* Best nearby ZPI(s) | * Best nearby ZPI(s) | ||
18edo | |||
{{harmonics in equal | 18 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 364: | Line 390: | ||
* Best nearby ZPI(s) | * Best nearby ZPI(s) | ||
48edo | |||
{{harmonics in equal | 48 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 370: | Line 397: | ||
* Best nearby ZPI(s) | * Best nearby ZPI(s) | ||
5edo | |||
{{harmonics in equal | 5 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 376: | Line 404: | ||
* Best nearby ZPI(s) | * Best nearby ZPI(s) | ||
6edo | |||
{{harmonics in equal | 6 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 383: | Line 412: | ||
20edo | 20edo | ||
{{harmonics in equal | 20 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 389: | Line 419: | ||
24edo | 24edo | ||
{{harmonics in equal | 24 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
Line 395: | Line 426: | ||
28edo | 28edo | ||
{{harmonics in equal | 28 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | * Nearby edt, ed6, ed12 and/or edf | ||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | * Nearby ed5, ed10, ed7 and/or ed11 (optional) | ||
* 1-2 WE tunings | * 1-2 WE tunings | ||
* Best nearby ZPI(s) | * Best nearby ZPI(s) |
Latest revision as of 10:41, 28 August 2025
Quick link
User:BudjarnLambeth/Draft related tunings section
Title1
Octave stretch or compression
23edo is not typically taken seriously as a tuning except by those interested in extreme xenharmony. Its fifths are significantly flat, and is neighbors 22edo and 24edo generally get more attention.
However, when using a slightly stretched octave of around 1216 cents, 23edo looks much better, and it approximates the perfect fifth (and various other intervals involving the 5th, 7th, 11th, and 13th harmonics) to within 18 cents or so. If we can tolerate errors around this size in 12edo, we can probably tolerate them in stretched-23 as well.
Stretched 23edo is one of the best tunings to use for exploring the antidiatonic scale since its fifth is more consonant and less "wolfish" than fifths in other pelogic family temperaments.
What follows is a comparison of stretched- and compressed-octave 23edo tunings.
- Step size: 51.653 ¢, octave size: 1188.0 ¢
Compressing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning ZPINAME does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -12.0 | +9.2 | -24.0 | +2.9 | -2.8 | -11.4 | +15.7 | +18.4 | -9.0 | -19.1 | -14.8 |
Relative (%) | -23.2 | +17.8 | -46.4 | +5.7 | -5.4 | -22.0 | +30.4 | +35.6 | -17.5 | -36.9 | -28.6 | |
Step | 23 | 37 | 46 | 54 | 60 | 65 | 70 | 74 | 77 | 80 | 83 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.6 | -23.4 | +12.2 | +3.7 | +2.1 | +6.4 | +16.1 | -21.0 | -2.2 | +20.6 | -4.7 | +24.9 |
Relative (%) | +3.2 | -45.2 | +23.5 | +7.2 | +4.0 | +12.5 | +31.2 | -40.7 | -4.2 | +39.9 | -9.1 | +48.2 | |
Step | 86 | 88 | 91 | 93 | 95 | 97 | 99 | 100 | 102 | 104 | 105 | 107 |
- Step size: 51.700 ¢, octave size: 1189.1 ¢
Compressing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 60ed6 does this. So does the tuning 105ed23 whose octave is identical within 0.01 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -10.9 | +10.9 | -21.8 | +5.4 | +0.0 | -8.4 | +18.9 | +21.8 | -5.5 | -15.4 | -10.9 |
Relative (%) | -21.1 | +21.1 | -42.2 | +10.5 | +0.0 | -16.2 | +36.6 | +42.2 | -10.6 | -29.7 | -21.1 | |
Steps (reduced) |
23 (23) |
37 (37) |
46 (46) |
54 (54) |
60 (0) |
65 (5) |
70 (10) |
74 (14) |
77 (17) |
80 (20) |
83 (23) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.6 | -19.3 | +16.4 | +8.0 | +6.5 | +10.9 | +20.7 | -16.4 | +2.5 | +25.4 | +0.1 | -21.8 |
Relative (%) | +10.8 | -37.3 | +31.7 | +15.5 | +12.5 | +21.1 | +40.1 | -31.7 | +4.9 | +49.1 | +0.3 | -42.2 | |
Steps (reduced) |
86 (26) |
88 (28) |
91 (31) |
93 (33) |
95 (35) |
97 (37) |
99 (39) |
100 (40) |
102 (42) |
104 (44) |
105 (45) |
106 (46) |
- Step size: 52.114 ¢, octave size: 1198.6 ¢
Compressing the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 85zpi does this. So does the tuning 73ed9 whose octave is identical within 0.02 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.4 | -25.9 | -2.8 | -24.3 | +24.9 | +18.6 | -4.1 | +0.4 | -25.6 | +17.8 | +23.5 |
Relative (%) | -2.6 | -49.6 | -5.3 | -46.6 | +47.8 | +35.7 | -7.9 | +0.8 | -49.2 | +34.2 | +45.1 | |
Step | 23 | 36 | 46 | 53 | 60 | 65 | 69 | 73 | 76 | 80 | 83 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -10.8 | +17.2 | +2.0 | -5.5 | -6.2 | -1.0 | +9.7 | +25.1 | -7.3 | +16.4 | -8.4 | +22.1 |
Relative (%) | -20.8 | +33.0 | +3.8 | -10.6 | -12.0 | -1.9 | +18.5 | +48.1 | -13.9 | +31.5 | -16.2 | +42.5 | |
Step | 85 | 88 | 90 | 92 | 94 | 96 | 98 | 100 | 101 | 103 | 104 | 106 |
- 23edo
- Step size: NNN ¢, octave size: 1200.0 ¢
Pure-octaves EDONAME approximates all harmonics up to 16 within NNN ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -23.7 | +0.0 | -21.1 | -23.7 | +22.5 | +0.0 | +4.8 | -21.1 | +22.6 | -23.7 |
Relative (%) | +0.0 | -45.4 | +0.0 | -40.4 | -45.4 | +43.1 | +0.0 | +9.2 | -40.4 | +43.3 | -45.4 | |
Steps (reduced) |
23 (0) |
36 (13) |
46 (0) |
53 (7) |
59 (13) |
65 (19) |
69 (0) |
73 (4) |
76 (7) |
80 (11) |
82 (13) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -5.7 | +22.5 | +7.4 | +0.0 | -0.6 | +4.8 | +15.5 | -21.1 | -1.2 | +22.6 | -2.2 | -23.7 |
Relative (%) | -11.0 | +43.1 | +14.2 | +0.0 | -1.2 | +9.2 | +29.8 | -40.4 | -2.3 | +43.3 | -4.2 | -45.4 | |
Steps (reduced) |
85 (16) |
88 (19) |
90 (21) |
92 (0) |
94 (2) |
96 (4) |
98 (6) |
99 (7) |
101 (9) |
103 (11) |
104 (12) |
105 (13) |
- Step size: 52.237 ¢, octave size: 1201.5 ¢
Stretching the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its SUBGROUP WE tuning and SUBGROUP TE tuning both do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.5 | -21.4 | +2.9 | -17.8 | -20.0 | -25.7 | +4.4 | +9.4 | -16.3 | -24.6 | -18.5 |
Relative (%) | +2.8 | -41.0 | +5.6 | -34.0 | -38.2 | -49.1 | +8.3 | +18.0 | -31.2 | -47.1 | -35.5 | |
Step | 23 | 36 | 46 | 53 | 59 | 64 | 69 | 73 | 76 | 79 | 82 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.4 | -24.2 | +13.1 | +5.8 | +5.3 | +10.8 | +21.7 | -14.9 | +5.2 | -23.1 | +4.4 | -17.1 |
Relative (%) | -0.7 | -46.3 | +25.0 | +11.1 | +10.2 | +20.8 | +41.6 | -28.4 | +9.9 | -44.3 | +8.4 | -32.7 | |
Step | 85 | 87 | 90 | 92 | 94 | 96 | 98 | 99 | 101 | 102 | 104 | 105 |
- Step size: 52.447 ¢, octave size: 1206.3 ¢
Stretching the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. Its SUBGROUP WE tuning and SUBGROUP TE tuning both do this. So does the tuning 76ed10 whose octave is identical within 0.01 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +6.3 | -13.9 | +12.6 | -6.6 | -7.6 | -12.2 | +18.8 | +24.7 | -0.3 | -8.0 | -1.3 |
Relative (%) | +12.0 | -26.4 | +24.0 | -12.6 | -14.5 | -23.3 | +35.9 | +47.1 | -0.7 | -15.3 | -2.5 | |
Step | 23 | 36 | 46 | 53 | 59 | 64 | 69 | 73 | 76 | 79 | 82 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +17.5 | -5.9 | -20.5 | +25.1 | +25.1 | -21.4 | -10.2 | +5.9 | -26.1 | -1.7 | +26.2 | +5.0 |
Relative (%) | +33.3 | -11.3 | -39.1 | +47.9 | +47.8 | -40.9 | -19.4 | +11.3 | -49.7 | -3.3 | +50.0 | +9.5 | |
Step | 85 | 87 | 89 | 92 | 94 | 95 | 97 | 99 | 100 | 102 | 104 | 105 |
- Step size: 52.575 ¢, octave size: 1209.2 ¢
Stretching the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning 59ed6 does this. So does the tuning 53ed5 whose octave is identical within 0.01 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +9.2 | -9.2 | +18.5 | +0.2 | +0.0 | -4.0 | -24.9 | -18.5 | +9.4 | +2.1 | +9.2 |
Relative (%) | +17.6 | -17.6 | +35.1 | +0.4 | +0.0 | -7.6 | -47.3 | -35.1 | +17.9 | +4.1 | +17.6 | |
Steps (reduced) |
23 (23) |
36 (36) |
46 (46) |
53 (53) |
59 (0) |
64 (5) |
68 (9) |
72 (13) |
76 (17) |
79 (20) |
82 (23) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -24.2 | +5.2 | -9.0 | -15.6 | -15.4 | -9.2 | +2.3 | +18.7 | -13.2 | +11.4 | -13.0 | +18.5 |
Relative (%) | -46.0 | +10.0 | -17.2 | -29.7 | -29.4 | -17.6 | +4.4 | +35.5 | -25.2 | +21.7 | -24.7 | +35.1 | |
Steps (reduced) |
84 (25) |
87 (28) |
89 (30) |
91 (32) |
93 (34) |
95 (36) |
97 (38) |
99 (40) |
100 (41) |
102 (43) |
103 (44) |
105 (46) |
- Step size: 52.615 ¢, octave size: 1210.1 ¢
Stretching the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning ZPINAME does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +10.1 | -7.8 | +20.3 | +2.3 | +2.3 | -1.5 | -22.2 | -15.6 | +12.4 | +5.3 | +12.5 |
Relative (%) | +19.3 | -14.9 | +38.6 | +4.3 | +4.4 | -2.8 | -42.2 | -29.7 | +23.6 | +10.0 | +23.7 | |
Step | 23 | 36 | 46 | 53 | 59 | 64 | 68 | 72 | 76 | 79 | 82 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -20.9 | +8.7 | -5.5 | -12.0 | -11.8 | -5.5 | +6.1 | +22.6 | -9.3 | +15.4 | -8.9 | +22.6 |
Relative (%) | -39.7 | +16.5 | -10.5 | -22.9 | -22.4 | -10.4 | +11.7 | +42.9 | -17.6 | +29.3 | -17.0 | +43.0 | |
Step | 84 | 87 | 89 | 91 | 93 | 95 | 97 | 99 | 100 | 102 | 103 | 105 |
- Step size: 52.832 ¢, octave size: 1215.1 ¢
Stretching the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning EDONOI does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +15.1 | +0.0 | -22.6 | +13.8 | +15.1 | +12.4 | -7.4 | +0.0 | -23.9 | +22.4 | -22.6 |
Relative (%) | +28.7 | +0.0 | -42.7 | +26.1 | +28.7 | +23.5 | -14.0 | +0.0 | -45.3 | +42.4 | -42.7 | |
Steps (reduced) |
23 (23) |
36 (0) |
45 (9) |
53 (17) |
59 (23) |
64 (28) |
68 (32) |
72 (0) |
75 (3) |
79 (7) |
81 (9) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.6 | -25.3 | +13.8 | +7.7 | +8.4 | +15.1 | -25.6 | -8.8 | +12.4 | -15.3 | +13.4 | -7.4 |
Relative (%) | -5.0 | -47.8 | +26.1 | +14.6 | +16.0 | +28.7 | -48.5 | -16.6 | +23.5 | -28.9 | +25.4 | -14.0 | |
Steps (reduced) |
84 (12) |
86 (14) |
89 (17) |
91 (19) |
93 (21) |
95 (23) |
96 (24) |
98 (26) |
100 (28) |
101 (29) |
103 (31) |
104 (32) |
- Step size: 52.863 ¢, octave size: 1215.9 ¢
Stretching the octave of EDONAME by around NNN ¢ results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN ¢. The tuning EDONOI does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +15.9 | +1.1 | -21.1 | +15.4 | +17.0 | +14.4 | -5.3 | +2.3 | -21.6 | +24.9 | -20.0 |
Relative (%) | +30.0 | +2.1 | -40.0 | +29.2 | +32.1 | +27.3 | -10.0 | +4.3 | -40.8 | +47.1 | -37.9 | |
Steps (reduced) |
23 (23) |
36 (36) |
45 (45) |
53 (53) |
59 (59) |
64 (64) |
68 (68) |
72 (72) |
75 (75) |
79 (79) |
81 (81) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -22.6 | +16.6 | +10.6 | +11.3 | +18.1 | -22.6 | -5.7 | +15.6 | -12.1 | +16.7 | -4.2 |
Relative (%) | +0.0 | -42.7 | +31.4 | +20.0 | +21.5 | +34.3 | -42.8 | -10.8 | +29.4 | -22.9 | +31.5 | -7.9 | |
Steps (reduced) |
84 (0) |
86 (2) |
89 (5) |
91 (7) |
93 (9) |
95 (11) |
96 (12) |
98 (14) |
100 (16) |
101 (17) |
103 (19) |
104 (20) |
Title2
Lab
Place holder
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0 | -102 | -86 | -69 | +49 | +59 | -105 | +2 | -28 | -130 | +55 |
Relative (%) | +0.0 | -34.0 | -28.8 | -22.9 | +16.2 | +19.8 | -35.0 | +0.8 | -9.4 | -43.2 | +18.3 | |
Step | 4 | 6 | 9 | 11 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.6 | +3.2 | +10.0 | +11.3 | -3.0 | +15.1 | +11.6 | +3.4 | +10.6 | +8.8 | -14.5 |
Relative (%) | -5.2 | +10.4 | +32.4 | +36.7 | -9.8 | +49.0 | +37.6 | +11.0 | +34.6 | +28.6 | -47.1 | |
Steps (reduced) |
39 (39) |
62 (62) |
91 (91) |
110 (110) |
135 (135) |
145 (5) |
160 (20) |
166 (26) |
177 (37) |
190 (50) |
193 (53) |
Possible tunings to be used on each page
You can remove some of these or add more that aren't listed here; this section is pretty much just brainstorming.
(Used https://x31eq.com/temper-pyscript/net.html, used WE instead of TE cause it kept defaulting to WE and I kept not remembering to switch it)
- High-priority
60edo (narrow down edonoi & ZPIs)
- 35edf
- 139ed5
- 301zpi (20.027c)
- 95edt
- 13-limit WE (20.013c) (155ed6 has octaves only 0.02 ¢ different)
- 215ed12
- 302zpi (19.962c)
- 208ed11 (ideal for catnip temperament)
- 303zpi (19.913c)
32edo
- 13-limit WE (37.481c)
- 11-limit WE (37.453c)
- 90ed7 (optimal for dual-5) (133zpi's octave only differs by 0.4 ¢)
- 51edt
- 134zpi (37.176c)
- 75ed5
33edo
- 76ed5
- 92ed7 (137zpi's octave differs by only 0.3 ¢)
- 52ed13
- 114ed11
- 138zpi (36.394c) (122ed13's octave differs by only 0.1 ¢)
- 13-limit WE (36.357c)
- 93ed7 (optimised for dual-fifths)
- 77ed5 (139zpi's octave differs by only 0.2 ¢)
- 123ed13 / 1ed47/46 (identical within <0.1 ¢)
- 115ed11
39edo
- 171zpi (30.973c) (optimised for dual-fifths use)
- 13-limit WE (30.757c) (octave of 135ed11 differs by only 0.2 ¢)
- 101ed6 (octave of 172zpi differs by only 0.4 ¢)
- 173zpi (30.672c) (octave of 62edt differs by only 0.2 ¢)
- 110ed7 (octave of 145ed13 differs by only 0.1 ¢)
- 91ed5
42edo
- 108ed6 (octave is identical to 97ed5 within 0.1 ¢)
- 189zpi (28.689c)
- 150ed12
- 145ed11
190zpi's octave is within 0.05 ¢ of pure-octaves 42edo
- 118ed7
- 13-limit WE (28.534c)
- 151ed12 (octave is identical to 7-limit WE within 0.3 ¢)
- 109ed6
- 191zpi (28.444c)
- 67edt
45edo
- 209zpi (26.550)
- 13-limit WE (26.695c)
- 161ed12
- 116ed6 (octave identical to 126ed7 within 0.1 ¢)
- 7-limit WE (26.745c)
- 207zpi (26.762)
- 71edt (octave identical to 155ed11 within 0.3 ¢)
54edo
- 139ed6 (octave is identical to 262zpi within 0.2 ¢)
- 151ed7
- 193ed12
- 263zpi (22.243c)
- 13-limit WE (22.198c) (octave is identical to 187ed11 within 0.1 ¢)
- 264zpi (22.175c) (octave is identical to 194ed12 within 0.01 ¢)
- 152ed7
- 140ed6
- 126ed5 (octave is identical to 86edt within 0.1 ¢)
59edo
- 152ed6
- 294zpi (20.399c)
- 211ed12
- 295zpi (20.342c)
pure octaves 59edo octave is identical to 137ed5 within 0.05 ¢
- 13-limit WE (20.320c)
- 7-limit WE (20.301c)
- 166ed7
- 212ed12
- 296zpi (20.282c)
- 153ed6
64edo
- 179ed7 (octave is identical to 326zpi within 0.3 ¢)
- 165ed6
- 229ed12 (octave is identical to 221ed11 within 0.1 ¢)
- 327zpi (18.767c)
- 11-limit WE (18.755c)
pure octaves 64edo (octave is identical to 13-limit WE within 0.13 ¢
- 328zpi (18.721c)
- 180ed7
- 230ed12
- 149ed5
- Medium priority
118edo (choose ZPIS)
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.26 | +0.00 | +0.13 | -0.26 | -2.72 | +0.00 | -0.52 | +0.13 | -2.17 | -0.26 | +3.54 |
Relative (%) | +0.0 | -2.6 | +0.0 | +1.2 | -2.6 | -26.8 | +0.0 | -5.1 | +1.2 | -21.3 | -2.6 | +34.8 | |
Steps (reduced) |
118 (0) |
187 (69) |
236 (0) |
274 (38) |
305 (69) |
331 (95) |
354 (0) |
374 (20) |
392 (38) |
408 (54) |
423 (69) |
437 (83) |
- 187edt
- 69edf
- 13-limit WE (10.171c)
- Best nearby ZPI(s)
13edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +36.5 | +0.0 | -17.1 | +36.5 | -45.7 | +0.0 | -19.3 | -17.1 | +2.5 | +36.5 | -9.8 |
Relative (%) | +0.0 | +39.5 | +0.0 | -18.5 | +39.5 | -49.6 | +0.0 | -20.9 | -18.5 | +2.7 | +39.5 | -10.6 | |
Steps (reduced) |
13 (0) |
21 (8) |
26 (0) |
30 (4) |
34 (8) |
36 (10) |
39 (0) |
41 (2) |
43 (4) |
45 (6) |
47 (8) |
48 (9) |
- Main: "13edo and optimal octave stretching"
- 2.5.11.13 WE (92.483c)
- 2.5.7.13 WE (92.804c)
- 2.3 WE (91.405c) (good for opposite 7 mapping)
- 38zpi (92.531c)
103edo (narrow down edonoi, choose ZPIS)
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -2.93 | +0.00 | -1.85 | -2.93 | -1.84 | +0.00 | +5.80 | -1.85 | -3.75 | -2.93 | -1.69 |
Relative (%) | +0.0 | -25.1 | +0.0 | -15.9 | -25.1 | -15.8 | +0.0 | +49.8 | -15.9 | -32.1 | -25.1 | -14.5 | |
Steps (reduced) |
103 (0) |
163 (60) |
206 (0) |
239 (33) |
266 (60) |
289 (83) |
309 (0) |
327 (18) |
342 (33) |
356 (47) |
369 (60) |
381 (72) |
- 163edt
- 239ed5
- 266ed6
- 289ed7
- 356ed11
- 369ed12
- 381ed13
- 421ed17
- 466ed23
- 13-limit WE (11.658c)
- Best nearby ZPI(s)
111edo (choose ZPIS)
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.75 | +0.00 | +2.88 | +0.75 | +4.15 | +0.00 | +1.50 | +2.88 | +0.03 | +0.75 | +2.72 |
Relative (%) | +0.0 | +6.9 | +0.0 | +26.6 | +6.9 | +38.4 | +0.0 | +13.8 | +26.6 | +0.3 | +6.9 | +25.1 | |
Steps (reduced) |
111 (0) |
176 (65) |
222 (0) |
258 (36) |
287 (65) |
312 (90) |
333 (0) |
352 (19) |
369 (36) |
384 (51) |
398 (65) |
411 (78) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
- Low priority
104edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
125edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
145edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
152edo
- 241edt
- 13-limit WE (7.894c)
- Best nearby ZPI(s)
159edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
166edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
182edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
198edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
212edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
243edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
247edo
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
- Optional
25edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +18.0 | +0.0 | -2.3 | +18.0 | -8.8 | +0.0 | -11.9 | -2.3 | -23.3 | +18.0 | +23.5 |
Relative (%) | +0.0 | +37.6 | +0.0 | -4.8 | +37.6 | -18.4 | +0.0 | -24.8 | -4.8 | -48.6 | +37.6 | +48.9 | |
Steps (reduced) |
25 (0) |
40 (15) |
50 (0) |
58 (8) |
65 (15) |
70 (20) |
75 (0) |
79 (4) |
83 (8) |
86 (11) |
90 (15) |
93 (18) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
26edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -9.6 | +0.0 | -17.1 | -9.6 | +0.4 | +0.0 | -19.3 | -17.1 | +2.5 | -9.6 | -9.8 |
Relative (%) | +0.0 | -20.9 | +0.0 | -37.0 | -20.9 | +0.9 | +0.0 | -41.8 | -37.0 | +5.5 | -20.9 | -21.1 | |
Steps (reduced) |
26 (0) |
41 (15) |
52 (0) |
60 (8) |
67 (15) |
73 (21) |
78 (0) |
82 (4) |
86 (8) |
90 (12) |
93 (15) |
96 (18) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
29edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +1.5 | +0.0 | -13.9 | +1.5 | -17.1 | +0.0 | +3.0 | -13.9 | -13.4 | +1.5 | -12.9 |
Relative (%) | +0.0 | +3.6 | +0.0 | -33.6 | +3.6 | -41.3 | +0.0 | +7.2 | -33.6 | -32.4 | +3.6 | -31.3 | |
Steps (reduced) |
29 (0) |
46 (17) |
58 (0) |
67 (9) |
75 (17) |
81 (23) |
87 (0) |
92 (5) |
96 (9) |
100 (13) |
104 (17) |
107 (20) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
30edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +18.0 | +0.0 | +13.7 | +18.0 | -8.8 | +0.0 | -3.9 | +13.7 | +8.7 | +18.0 | -0.5 |
Relative (%) | +0.0 | +45.1 | +0.0 | +34.2 | +45.1 | -22.1 | +0.0 | -9.8 | +34.2 | +21.7 | +45.1 | -1.3 | |
Steps (reduced) |
30 (0) |
48 (18) |
60 (0) |
70 (10) |
78 (18) |
84 (24) |
90 (0) |
95 (5) |
100 (10) |
104 (14) |
108 (18) |
111 (21) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
34edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +3.9 | +0.0 | +1.9 | +3.9 | -15.9 | +0.0 | +7.9 | +1.9 | +13.4 | +3.9 | +6.5 |
Relative (%) | +0.0 | +11.1 | +0.0 | +5.4 | +11.1 | -45.0 | +0.0 | +22.3 | +5.4 | +37.9 | +11.1 | +18.5 | |
Steps (reduced) |
34 (0) |
54 (20) |
68 (0) |
79 (11) |
88 (20) |
95 (27) |
102 (0) |
108 (6) |
113 (11) |
118 (16) |
122 (20) |
126 (24) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
35edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -16.2 | +0.0 | -9.2 | -16.2 | -8.8 | +0.0 | +1.8 | -9.2 | -2.7 | -16.2 | +16.6 |
Relative (%) | +0.0 | -47.4 | +0.0 | -26.7 | -47.4 | -25.7 | +0.0 | +5.3 | -26.7 | -8.0 | -47.4 | +48.5 | |
Steps (reduced) |
35 (0) |
55 (20) |
70 (0) |
81 (11) |
90 (20) |
98 (28) |
105 (0) |
111 (6) |
116 (11) |
121 (16) |
125 (20) |
130 (25) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
36edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | -2.2 | +0.0 | -3.9 | +13.7 | +15.3 | -2.0 | -7.2 |
Relative (%) | +0.0 | -5.9 | +0.0 | +41.1 | -5.9 | -6.5 | +0.0 | -11.7 | +41.1 | +46.0 | -5.9 | -21.6 | |
Steps (reduced) |
36 (0) |
57 (21) |
72 (0) |
84 (12) |
93 (21) |
101 (29) |
108 (0) |
114 (6) |
120 (12) |
125 (17) |
129 (21) |
133 (25) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
37edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +11.6 | +0.0 | +2.9 | +11.6 | +4.1 | +0.0 | -9.3 | +2.9 | +0.0 | +11.6 | +2.7 |
Relative (%) | +0.0 | +35.6 | +0.0 | +8.9 | +35.6 | +12.8 | +0.0 | -28.7 | +8.9 | +0.1 | +35.6 | +8.4 | |
Steps (reduced) |
37 (0) |
59 (22) |
74 (0) |
86 (12) |
96 (22) |
104 (30) |
111 (0) |
117 (6) |
123 (12) |
128 (17) |
133 (22) |
137 (26) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
9edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -35.3 | +0.0 | +13.7 | -35.3 | -35.5 | +0.0 | +62.8 | +13.7 | -18.0 | -35.3 | -40.5 |
Relative (%) | +0.0 | -26.5 | +0.0 | +10.3 | -26.5 | -26.6 | +0.0 | +47.1 | +10.3 | -13.5 | -26.5 | -30.4 | |
Steps (reduced) |
9 (0) |
14 (5) |
18 (0) |
21 (3) |
23 (5) |
25 (7) |
27 (0) |
29 (2) |
30 (3) |
31 (4) |
32 (5) |
33 (6) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
10edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +18.0 | +0.0 | -26.3 | +18.0 | -8.8 | +0.0 | +36.1 | -26.3 | +48.7 | +18.0 | -0.5 |
Relative (%) | +0.0 | +15.0 | +0.0 | -21.9 | +15.0 | -7.4 | +0.0 | +30.1 | -21.9 | +40.6 | +15.0 | -0.4 | |
Steps (reduced) |
10 (0) |
16 (6) |
20 (0) |
23 (3) |
26 (6) |
28 (8) |
30 (0) |
32 (2) |
33 (3) |
35 (5) |
36 (6) |
37 (7) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
11edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -47.4 | +0.0 | +50.0 | -47.4 | +13.0 | +0.0 | +14.3 | +50.0 | -5.9 | -47.4 | +32.2 |
Relative (%) | +0.0 | -43.5 | +0.0 | +45.9 | -43.5 | +11.9 | +0.0 | +13.1 | +45.9 | -5.4 | -43.5 | +29.5 | |
Steps (reduced) |
11 (0) |
17 (6) |
22 (0) |
26 (4) |
28 (6) |
31 (9) |
33 (0) |
35 (2) |
37 (4) |
38 (5) |
39 (6) |
41 (8) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
15edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +18.0 | +0.0 | +13.7 | +18.0 | -8.8 | +0.0 | +36.1 | +13.7 | +8.7 | +18.0 | +39.5 |
Relative (%) | +0.0 | +22.6 | +0.0 | +17.1 | +22.6 | -11.0 | +0.0 | +45.1 | +17.1 | +10.9 | +22.6 | +49.3 | |
Steps (reduced) |
15 (0) |
24 (9) |
30 (0) |
35 (5) |
39 (9) |
42 (12) |
45 (0) |
48 (3) |
50 (5) |
52 (7) |
54 (9) |
56 (11) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
18edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +31.4 | +0.0 | +13.7 | +31.4 | +31.2 | +0.0 | -3.9 | +13.7 | -18.0 | +31.4 | +26.1 |
Relative (%) | +0.0 | +47.1 | +0.0 | +20.5 | +47.1 | +46.8 | +0.0 | -5.9 | +20.5 | -27.0 | +47.1 | +39.2 | |
Steps (reduced) |
18 (0) |
29 (11) |
36 (0) |
42 (6) |
47 (11) |
51 (15) |
54 (0) |
57 (3) |
60 (6) |
62 (8) |
65 (11) |
67 (13) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
48edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -2.0 | +0.0 | -11.3 | -2.0 | +6.2 | +0.0 | -3.9 | -11.3 | -1.3 | -2.0 | +9.5 |
Relative (%) | +0.0 | -7.8 | +0.0 | -45.3 | -7.8 | +24.7 | +0.0 | -15.6 | -45.3 | -5.3 | -7.8 | +37.9 | |
Steps (reduced) |
48 (0) |
76 (28) |
96 (0) |
111 (15) |
124 (28) |
135 (39) |
144 (0) |
152 (8) |
159 (15) |
166 (22) |
172 (28) |
178 (34) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
5edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0 | +18 | +0 | +94 | +18 | -9 | +0 | +36 | +94 | -71 | +18 | +119 |
Relative (%) | +0.0 | +7.5 | +0.0 | +39.0 | +7.5 | -3.7 | +0.0 | +15.0 | +39.0 | -29.7 | +7.5 | +49.8 | |
Steps (reduced) |
5 (0) |
8 (3) |
10 (0) |
12 (2) |
13 (3) |
14 (4) |
15 (0) |
16 (1) |
17 (2) |
17 (2) |
18 (3) |
19 (4) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
6edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +98.0 | +0.0 | +13.7 | +98.0 | +31.2 | +0.0 | -3.9 | +13.7 | +48.7 | +98.0 | -40.5 |
Relative (%) | +0.0 | +49.0 | +0.0 | +6.8 | +49.0 | +15.6 | +0.0 | -2.0 | +6.8 | +24.3 | +49.0 | -20.3 | |
Steps (reduced) |
6 (0) |
10 (4) |
12 (0) |
14 (2) |
16 (4) |
17 (5) |
18 (0) |
19 (1) |
20 (2) |
21 (3) |
22 (4) |
22 (4) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
20edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | +18.0 | +0.0 | -26.3 | +18.0 | -8.8 | +0.0 | -23.9 | -26.3 | -11.3 | +18.0 | -0.5 |
Relative (%) | +0.0 | +30.1 | +0.0 | -43.9 | +30.1 | -14.7 | +0.0 | -39.9 | -43.9 | -18.9 | +30.1 | -0.9 | |
Steps (reduced) |
20 (0) |
32 (12) |
40 (0) |
46 (6) |
52 (12) |
56 (16) |
60 (0) |
63 (3) |
66 (6) |
69 (9) |
72 (12) |
74 (14) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
24edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -2.0 | +0.0 | +13.7 | -2.0 | -18.8 | +0.0 | -3.9 | +13.7 | -1.3 | -2.0 | +9.5 |
Relative (%) | +0.0 | -3.9 | +0.0 | +27.4 | -3.9 | -37.7 | +0.0 | -7.8 | +27.4 | -2.6 | -3.9 | +18.9 | |
Steps (reduced) |
24 (0) |
38 (14) |
48 (0) |
56 (8) |
62 (14) |
67 (19) |
72 (0) |
76 (4) |
80 (8) |
83 (11) |
86 (14) |
89 (17) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)
28edo
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.0 | -16.2 | +0.0 | -0.6 | -16.2 | +16.9 | +0.0 | +10.4 | -0.6 | +5.8 | -16.2 | +16.6 |
Relative (%) | +0.0 | -37.9 | +0.0 | -1.4 | -37.9 | +39.4 | +0.0 | +24.2 | -1.4 | +13.6 | -37.9 | +38.8 | |
Steps (reduced) |
28 (0) |
44 (16) |
56 (0) |
65 (9) |
72 (16) |
79 (23) |
84 (0) |
89 (5) |
93 (9) |
97 (13) |
100 (16) |
104 (20) |
- Nearby edt, ed6, ed12 and/or edf
- Nearby ed5, ed10, ed7 and/or ed11 (optional)
- 1-2 WE tunings
- Best nearby ZPI(s)