32edt: Difference between revisions
Jump to navigation
Jump to search
m Replace wide table w 2 short tables |
m Removing from Category:Edonoi using Cat-a-lot |
||
(5 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
'''32EDT''' is the [[Edt|equal division of the third harmonic]] into 32 parts of 59.4361 [[cent | '''32EDT''' is the [[Edt|equal division of the third harmonic]] into 32 parts of 59.4361 [[cent]]s each, corresponding to 20.1898 [[edo]]. It has a distinct sharp tendency, in the sense that if 3 is pure, 5, 7, 11, 13, 17, and 19 are all sharp. It tempers out 3125/3087 and 885735/823543 in the 7-limit; 891/875, 1331/1323, and 2475/2401 in the 11-limit; 275/273, 351/343, 729/715, and 847/845 in the 13-limit; 121/119, 189/187, 225/221, 459/455, and 845/833 in the 17-limit; 135/133, 171/169, 247/245, 325/323, and 363/361 in the 19-limit (no-twos subgroup). It is the eighth [[the Riemann zeta function and tuning#Removing primes|zeta peak tritave division]]. | ||
==Harmonics== | == Harmonics == | ||
{{Harmonics in equal | {{Harmonics in equal | ||
| steps = | | steps = 32 | ||
| num = 3 | | num = 3 | ||
| denom = 1 | | denom = 1 | ||
| columns = 9 | |||
| intervals = prime | | intervals = prime | ||
}} | }} | ||
{{Harmonics in equal | {{Harmonics in equal | ||
| steps = | | steps = 32 | ||
| num = 3 | | num = 3 | ||
| denom = 1 | | denom = 1 | ||
| start = 12 | | start = 12 | ||
| collapsed = 1 | | collapsed = 1 | ||
| intervals = | | intervals = odd | ||
}} | }} | ||
== Intervals == | == Intervals == | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! | ! Step | ||
! | ! [[Cent]]s | ||
! | ! [[Hekt]]s | ||
|- | |- | ||
| 1 | |||
| 59.436 | |||
|40.625 | | 40.625 | ||
|- | |- | ||
| 2 | |||
| 118.872 | |||
|81.25 | | 81.25 | ||
|- | |- | ||
| 3 | |||
| 178.308 | |||
|121.875 | | 121.875 | ||
|- | |- | ||
| 4 | |||
| 237.744 | |||
|162.5 | | 162.5 | ||
|- | |- | ||
| 5 | |||
| 297.180 | |||
|203.125 | | 203.125 | ||
|- | |- | ||
| 6 | |||
| 356.617 | |||
|243.75 | | 243.75 | ||
|- | |- | ||
| 7 | |||
| 416.053 | |||
|284.375 | | 284.375 | ||
|- | |- | ||
| 8 | |||
| 475.489 | |||
|325 | | 325 | ||
|- | |- | ||
| 9 | |||
| 534.925 | |||
|365.625 | | 365.625 | ||
|- | |- | ||
| 10 | |||
| 594.361 | |||
|406.25 | | 406.25 | ||
|- | |- | ||
| 11 | |||
| 653.797 | |||
|446.875 | | 446.875 | ||
|- | |- | ||
| 12 | |||
| 713.233 | |||
|487.5 | | 487.5 | ||
|- | |- | ||
| 13 | |||
| 772.669 | |||
|528.125 | | 528.125 | ||
|- | |- | ||
| 14 | |||
| 832.105 | |||
|568.75 | | 568.75 | ||
|- | |- | ||
| 15 | |||
| 891.541 | |||
|609.375 | | 609.375 | ||
|- | |- | ||
| 16 | |||
| 950.978 | |||
|650 | | 650 | ||
|- | |- | ||
| 17 | |||
| 1010.414 | |||
|690.625 | | 690.625 | ||
|- | |- | ||
| 18 | |||
| 1069.85 | |||
|731.25 | | 731.25 | ||
|- | |- | ||
| 19 | |||
| 1129.286 | |||
|774.875 | | 774.875 | ||
|- | |- | ||
| 20 | |||
| 1188.722 | |||
|812.5 | | 812.5 | ||
|- | |- | ||
| 21 | |||
| 1248.158 | |||
|853.125. | | 853.125. | ||
|- | |- | ||
| 22 | |||
| 1307.594 | |||
|893.75 | | 893.75 | ||
|- | |- | ||
| 23 | |||
| 1367.03 | |||
|934.375 | | 934.375 | ||
|- | |- | ||
| 24 | |||
| 1426.466 | |||
|975 | | 975 | ||
|- | |- | ||
| 25 | |||
| 1485.902 | |||
|1015.625 | | 1015.625 | ||
|- | |- | ||
| 26 | |||
| 1545.338 | |||
|1056.25 | | 1056.25 | ||
|- | |- | ||
| 27 | |||
| 1604.775 | |||
|1096.875 | | 1096.875 | ||
|- | |- | ||
| 28 | |||
| 1664.211 | |||
|1137.5 | | 1137.5 | ||
|- | |- | ||
| 29 | |||
| 1723.647 | |||
|1178.125 | | 1178.125 | ||
|- | |- | ||
| 30 | |||
| 1783.083 | |||
|1218.75 | | 1218.75 | ||
|- | |- | ||
| 31 | |||
| 1842.519 | |||
|1259.375 | | 1259.375 | ||
|- | |- | ||
| 32 | |||
| 1901.955 | |||
|1300 | | 1300 | ||
|} | |} | ||
{{todo|expand}} | |||
Latest revision as of 19:21, 1 August 2025
← 31edt | 32edt | 33edt → |
32EDT is the equal division of the third harmonic into 32 parts of 59.4361 cents each, corresponding to 20.1898 edo. It has a distinct sharp tendency, in the sense that if 3 is pure, 5, 7, 11, 13, 17, and 19 are all sharp. It tempers out 3125/3087 and 885735/823543 in the 7-limit; 891/875, 1331/1323, and 2475/2401 in the 11-limit; 275/273, 351/343, 729/715, and 847/845 in the 13-limit; 121/119, 189/187, 225/221, 459/455, and 845/833 in the 17-limit; 135/133, 171/169, 247/245, 325/323, and 363/361 in the 19-limit (no-twos subgroup). It is the eighth zeta peak tritave division.
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -11.3 | +0.0 | +7.2 | +19.0 | +9.2 | +17.2 | +28.2 | +14.0 | -19.6 |
Relative (%) | -19.0 | +0.0 | +12.1 | +32.0 | +15.5 | +28.9 | +47.5 | +23.5 | -33.0 | |
Steps (reduced) |
20 (20) |
32 (0) |
47 (15) |
57 (25) |
70 (6) |
75 (11) |
83 (19) |
86 (22) |
91 (27) |
Harmonic | 25 | 27 | 29 | 31 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +14.4 | +0.0 | -4.8 | -1.4 | +9.2 | +26.2 | -10.6 | +17.2 | -10.0 | +26.5 | +7.2 |
Relative (%) | +24.2 | +0.0 | -8.1 | -2.4 | +15.5 | +44.1 | -17.8 | +28.9 | -16.8 | +44.5 | +12.1 | |
Steps (reduced) |
94 (30) |
96 (0) |
98 (2) |
100 (4) |
102 (6) |
104 (8) |
105 (9) |
107 (11) |
108 (12) |
110 (14) |
111 (15) |
Intervals
Step | Cents | Hekts |
---|---|---|
1 | 59.436 | 40.625 |
2 | 118.872 | 81.25 |
3 | 178.308 | 121.875 |
4 | 237.744 | 162.5 |
5 | 297.180 | 203.125 |
6 | 356.617 | 243.75 |
7 | 416.053 | 284.375 |
8 | 475.489 | 325 |
9 | 534.925 | 365.625 |
10 | 594.361 | 406.25 |
11 | 653.797 | 446.875 |
12 | 713.233 | 487.5 |
13 | 772.669 | 528.125 |
14 | 832.105 | 568.75 |
15 | 891.541 | 609.375 |
16 | 950.978 | 650 |
17 | 1010.414 | 690.625 |
18 | 1069.85 | 731.25 |
19 | 1129.286 | 774.875 |
20 | 1188.722 | 812.5 |
21 | 1248.158 | 853.125. |
22 | 1307.594 | 893.75 |
23 | 1367.03 | 934.375 |
24 | 1426.466 | 975 |
25 | 1485.902 | 1015.625 |
26 | 1545.338 | 1056.25 |
27 | 1604.775 | 1096.875 |
28 | 1664.211 | 1137.5 |
29 | 1723.647 | 1178.125 |
30 | 1783.083 | 1218.75 |
31 | 1842.519 | 1259.375 |
32 | 1901.955 | 1300 |