2129edo: Difference between revisions
Created page with "{{Infobox ET}} {{EDO intro|2129}} == Theory == 2129et tempers out 95703125/95664294, 5767168/5764801, 47265625/47258883, 67110351/67108864 and 43923/43904 in the 11-limit; 337..." |
m Text replacement - "[[Helmholtz temperament|" to "[[Helmholtz (temperament)|" Tags: Mobile edit Mobile web edit |
||
(15 intermediate revisions by 7 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ | {{ED intro}} | ||
== Theory == | == Theory == | ||
2129edo is only [[consistent]] to the [[5-odd-limit]], where it tempers out the [[schisma]]. Otherwise its poor approximation to both [[harmonic]]s [[3/1|3]] and [[5/1|5]] commends itself to a 2.9.15.7.11.13.… [[subgroup]] interpretation. However, its representation of [[5/3]] and its octave complement [[6/5]] are extremely accurate, due to being a continued fraction convergent to their logarithms. | |||
===Odd harmonics=== | |||
=== Odd harmonics === | |||
{{Harmonics in equal|2129}} | {{Harmonics in equal|2129}} | ||
===Subsets and supersets=== | |||
=== Subsets and supersets === | |||
2129edo is the 320th [[prime edo]]. 4258edo, which doubles it, gives a good correction to the harmonics 3 and 5. | 2129edo is the 320th [[prime edo]]. 4258edo, which doubles it, gives a good correction to the harmonics 3 and 5. | ||
==Regular temperament properties== | |||
== Regular temperament properties == | |||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
|- | |- | ||
|2.9 | ! rowspan="2" | [[Subgroup]] | ||
|{{monzo|-6749 2129}} | ! rowspan="2" | [[Comma list]] | ||
|{{ | ! rowspan="2" | [[Mapping]] | ||
| | ! rowspan="2" | Optimal<br />8ve stretch (¢) | ||
! colspan="2" | Tuning error | |||
|- | |||
! [[TE error|Absolute]] (¢) | |||
! [[TE simple badness|Relative]] (%) | |||
|- | |||
| 2.9 | |||
| {{monzo| -6749 2129 }} | |||
| {{mapping| 2129 6749 }} | |||
| −0.0204 | |||
| 0.0204 | | 0.0204 | ||
| 3.62 | | 3.62 | ||
|- | |- | ||
|2.9.15 | | 2.9.15 | ||
|{{monzo|37 29 -33}}, {{monzo|209 -61 -4}} | | {{monzo| 37 29 -33 }}, {{monzo| 209 -61 -4 }} | ||
|{{ | | {{mapping| 2129 6749 8318 }} | ||
| | | −0.0247 | ||
| 0.0177 | | 0.0177 | ||
| 3.14 | | 3.14 | ||
|- | |- | ||
|2.9.15.7 | | 2.9.15.7 | ||
|24414062500/24407490807, 13841287201/13839609375, 2199023255552/2197176384375 | | 24414062500/24407490807, 13841287201/13839609375, 2199023255552/2197176384375 | ||
|{{ | | {{mapping| 2129 6749 8318 5977 }} | ||
| | | −0.0256 | ||
| 0.0154 | | 0.0154 | ||
| 2.73 | | 2.73 | ||
|- | |- | ||
|2.9.15.7.11 | | 2.9.15.7.11 | ||
|9800/9801, 5767168/5764801, 104857600/104825259, 13841287201/13839609375 | | 9800/9801, 5767168/5764801, 104857600/104825259, 13841287201/13839609375 | ||
|{{ | | {{mapping| 2129 6749 8318 5977 7365 }} | ||
| | | −0.0162 | ||
| 0.0232 | | 0.0232 | ||
| 4.12 | | 4.12 | ||
|- | |- | ||
|2.9.15.7.11.13 | | 2.9.15.7.11.13 | ||
|10648/10647, 9801/9800, 196625/196608, 36924979/36905625, 304117528/303807105 | | 10648/10647, 9801/9800, 196625/196608, 36924979/36905625, 304117528/303807105 | ||
|{{ | | {{mapping| 2129 6749 8318 5977 7365 7878 }} | ||
| | | −0.0075 | ||
| 0.0288 | | 0.0288 | ||
| 5.11 | | 5.11 | ||
|- | |- | ||
|2.9.15.7.11.13.17 | | 2.9.15.7.11.13.17 | ||
|2431/2430, 10648/10647, 9801/9800, 845325/845152, 297440/297381, 11275335/11275264, 15980544/15978655 | | 2431/2430, 10648/10647, 9801/9800, 845325/845152, 297440/297381, 11275335/11275264, 15980544/15978655 | ||
|{{ | | {{mapping| 2129 6749 8318 5977 7365 7878 8702 }} | ||
| | | −0.0024 | ||
| 0.0295 | | 0.0295 | ||
| 5.2 | | 5.2 | ||
Line 63: | Line 68: | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+ style="font-size: 105%;" | Table of rank-2 temperaments by generator | ||
! Periods<br>per 8ve | |- | ||
! Generator | ! Periods<br />per 8ve | ||
! Cents | ! Generator* | ||
! Associated<br>ratio | ! Cents* | ||
! Associated<br />ratio* | |||
! Temperaments | ! Temperaments | ||
|- | |- | ||
|1 | | 1 | ||
| | | 884\2129 | ||
| | | 498.262 | ||
| | | 4/3 | ||
|[[ | | [[Helmholtz (temperament)|Helmholtz]] | ||
|} | |} | ||
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct | |||
== Scales == | |||
* [[Hemischis29]] | |||
== Music == | == Music == | ||
*[https:// | ; [[User:Francium|Francium]] | ||
* "Brid Dance" from ''HemischisMatic EP'' (2023) – [https://open.spotify.com/track/6yXO4yHFM0EWk3pCjop8Dp Spotify] | [https://francium223.bandcamp.com/track/brid-dance Bandcamp] | [https://youtu.be/xF_1MKMlsjY?si=8Db0YVe6GQ9ZgPET YouTube] – [[hemischis]] in 2129edo tuning | |||
[[Category:Listen]] |
Latest revision as of 02:30, 17 April 2025
← 2128edo | 2129edo | 2130edo → |
2129 equal divisions of the octave (abbreviated 2129edo or 2129ed2), also called 2129-tone equal temperament (2129tet) or 2129 equal temperament (2129et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 2129 equal parts of about 0.564 ¢ each. Each step represents a frequency ratio of 21/2129, or the 2129th root of 2.
Theory
2129edo is only consistent to the 5-odd-limit, where it tempers out the schisma. Otherwise its poor approximation to both harmonics 3 and 5 commends itself to a 2.9.15.7.11.13.… subgroup interpretation. However, its representation of 5/3 and its octave complement 6/5 are extremely accurate, due to being a continued fraction convergent to their logarithms.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.217 | -0.217 | +0.080 | +0.129 | -0.073 | -0.133 | +0.130 | -0.117 | +0.091 | -0.137 | +0.190 |
Relative (%) | -38.5 | -38.5 | +14.1 | +23.0 | -13.0 | -23.6 | +23.0 | -20.8 | +16.2 | -24.4 | +33.7 | |
Steps (reduced) |
3374 (1245) |
4943 (685) |
5977 (1719) |
6749 (362) |
7365 (978) |
7878 (1491) |
8318 (1931) |
8702 (186) |
9044 (528) |
9351 (835) |
9631 (1115) |
Subsets and supersets
2129edo is the 320th prime edo. 4258edo, which doubles it, gives a good correction to the harmonics 3 and 5.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.9 | [-6749 2129⟩ | [⟨2129 6749]] | −0.0204 | 0.0204 | 3.62 |
2.9.15 | [37 29 -33⟩, [209 -61 -4⟩ | [⟨2129 6749 8318]] | −0.0247 | 0.0177 | 3.14 |
2.9.15.7 | 24414062500/24407490807, 13841287201/13839609375, 2199023255552/2197176384375 | [⟨2129 6749 8318 5977]] | −0.0256 | 0.0154 | 2.73 |
2.9.15.7.11 | 9800/9801, 5767168/5764801, 104857600/104825259, 13841287201/13839609375 | [⟨2129 6749 8318 5977 7365]] | −0.0162 | 0.0232 | 4.12 |
2.9.15.7.11.13 | 10648/10647, 9801/9800, 196625/196608, 36924979/36905625, 304117528/303807105 | [⟨2129 6749 8318 5977 7365 7878]] | −0.0075 | 0.0288 | 5.11 |
2.9.15.7.11.13.17 | 2431/2430, 10648/10647, 9801/9800, 845325/845152, 297440/297381, 11275335/11275264, 15980544/15978655 | [⟨2129 6749 8318 5977 7365 7878 8702]] | −0.0024 | 0.0295 | 5.2 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 884\2129 | 498.262 | 4/3 | Helmholtz |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct