1051edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Francium (talk | contribs)
Created page with "{{Infobox ET}} {{EDO intro|1051}} == Theory == 1051et tempers out 2460375/2458624 in the 7-limit; 820125/819896, 2097152/2096325, 514714375/514434888, 180224/180075, 184549376..."
 
ArrowHead294 (talk | contribs)
mNo edit summary
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|1051}}
{{ED intro}}
 
== Theory ==
== Theory ==
1051et tempers out 2460375/2458624 in the 7-limit; 820125/819896, 2097152/2096325, 514714375/514434888, 180224/180075, 184549376/184528125, 43923/43904 and 20614528/20588575 in the 11-limit.  
1051edo only has a [[consistency]] limit of 3 and does poorly with approximating the harmonic 5. However, it has a reasonable representation of the 2.3.7.11.17.19 subgroup.
From a regular temperament perspective, 1051edo only has a consistency limit of 3 and does poorly with approximating the harmonics 5 and 7. However, 1051edo has a good representation of the 2.3.11.13.15.17.19.35 subgroup.
 
===Odd harmonics===
Assume the [[patent val]], 1051et tempers out 2460375/2458624 in the 7-limit; 820125/819896, 2097152/2096325, 514714375/514434888, 180224/180075, 184549376/184528125, 43923/43904 and 20614528/20588575 in the 11-limit.  
 
=== Odd harmonics ===
{{Harmonics in equal|1051}}
{{Harmonics in equal|1051}}
===Subsets and supersets===
 
1051edo is the 177th [[prime edo]]. 2102edo, which doubles it, gives a good correction to the harmonic 5. 4212edo, which quadruples it, gives a good correction to the harmonic 7.
=== Subsets and supersets ===
==Regular temperament properties==
1051edo is the 177th [[prime edo]]. 2102edo, which doubles it, gives a good correction to the harmonic 5 and 7. 4212edo, which quadruples it, gives a good correction to the harmonic 3.
 
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" |[[Subgroup]]
! rowspan="2" |[[Comma list|Comma List]]
! rowspan="2" |[[Mapping]]
! rowspan="2" |Optimal<br>8ve Stretch (¢)
! colspan="2" |Tuning Error
|-
|-
![[TE error|Absolute]] (¢)
! rowspan="2" | [[Subgroup]]
![[TE simple badness|Relative]] (%)
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning error
|-
|-
|2.3
! [[TE error|Absolute]] (¢)
|{{monzo|1666 -1051}}
! [[TE simple badness|Relative]] (%)
|{{val|1051 1666}}
|-
| -0.0736
| 2.3
| {{monzo| 1666 -1051 }}
| {{mapping| 1051 1666 }}
| −0.0736
| 0.0736
| 0.0736
| 6.45
| 6.45
|-
|-
|2.3.15
| 2.3.5
|{{monzo|-68 1 17}}, {{monzo|42 -61 14}}
| {{monzo| -68 18 17 }}, {{monzo| -26 -29 31 }}
|{{val|1051 1666 4106}}
| {{mapping| 1051 1666 2440 }} (1051)
| -0.0353
| +0.0077
| 0.0810
| 0.1298
| 7.09
| 11.4
|-
|2.3.15.35
|2460375/2458624, 4096000/4084101, 299072265625/297538935552
|{{val|1051 1666 4106 5391}}
| -0.0333
| 0.0702
| 6.15
|-
|2.3.15.35.11
|6250/6237, 180224/180075, 2460375/2458624, 43923/43904
|{{val|1051 1666 4106 5391 3636}}
| -0.0357
| 0.0630
| 5.52
|-
|2.3.15.35.11.13
|1716/1715, 4096/4095, 6250/6237, 91125/91091, 6656/6655
|{{val|1051 1666 4106 5391 3636 3889}}
| -0.0214
| 0.0658
| 5.76
|-
|2.3.15.35.11.13.17
|1275/1274, 1716/1715, 2431/2430, 4096/4095, 6250/6237, 6656/6655
|{{val|1051 1666 4106 5391 3636 3889 4296}}
| -0.0214
| 0.0609
| 5.33
|-
|-
|2.3.15.35.11.13.17.19
| 2.3.5
|1540/1539, 1275/1274, 1716/1715, 2431/2430, 4096/4095, 6250/6237, 41800/41769
| {{monzo| 40 7 -22 }}, {{monzo| 63 -50 7 }}
|{{val|1051 1666 4106 5391 3636 3889 4296 4465}}
| {{mapping| 1051 1666 2441 }} (1051c)
| -0.0331
| −0.1562
| 0.0648
| 0.1313
| 5.68
| 11.5
|}
|}
 
<!--
=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
! Periods<br>per 8ve
|-
! Generator<br>(reduced)
! Periods<br />per 8ve
! Cents<br>(reduced)
! Generator*
! Associated<br>ratio
! Cents*
! Associated<br />ratio*
! Temperaments
! Temperaments
|-
|1
|435\1051
|496.67
|5457/4096
|Edson
|}
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct
-->
== Music ==
; [[Francium]]
* [https://www.youtube.com/watch?v=e1lARtnPl1E ''you have to run!''] (2023) – [[edson]] in 1051edo tuning


==  Music ==
[[Category:Listen]]
*[https://www.youtube.com/watch?v=e1lARtnPl1E you have to run!] by [[User:Francium|Francium]]

Latest revision as of 12:54, 21 February 2025

← 1050edo 1051edo 1052edo →
Prime factorization 1051 (prime)
Step size 1.14177 ¢ 
Fifth 615\1051 (702.188 ¢)
Semitones (A1:m2) 101:78 (115.3 ¢ : 89.06 ¢)
Consistency limit 3
Distinct consistency limit 3

1051 equal divisions of the octave (abbreviated 1051edo or 1051ed2), also called 1051-tone equal temperament (1051tet) or 1051 equal temperament (1051et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 1051 equal parts of about 1.14 ¢ each. Each step represents a frequency ratio of 21/1051, or the 1051st root of 2.

Theory

1051edo only has a consistency limit of 3 and does poorly with approximating the harmonic 5. However, it has a reasonable representation of the 2.3.7.11.17.19 subgroup.

Assume the patent val, 1051et tempers out 2460375/2458624 in the 7-limit; 820125/819896, 2097152/2096325, 514714375/514434888, 180224/180075, 184549376/184528125, 43923/43904 and 20614528/20588575 in the 11-limit.

Odd harmonics

Approximation of odd harmonics in 1051edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +0.233 -0.396 +0.537 +0.467 +0.157 -0.185 -0.162 +0.087 +0.489 -0.372 -0.301
Relative (%) +20.4 -34.6 +47.0 +40.9 +13.7 -16.2 -14.2 +7.7 +42.8 -32.6 -26.4
Steps
(reduced)
1666
(615)
2440
(338)
2951
(849)
3332
(179)
3636
(483)
3889
(736)
4106
(953)
4296
(92)
4465
(261)
4616
(412)
4754
(550)

Subsets and supersets

1051edo is the 177th prime edo. 2102edo, which doubles it, gives a good correction to the harmonic 5 and 7. 4212edo, which quadruples it, gives a good correction to the harmonic 3.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [1666 -1051 [1051 1666]] −0.0736 0.0736 6.45
2.3.5 [-68 18 17, [-26 -29 31 [1051 1666 2440]] (1051) +0.0077 0.1298 11.4
2.3.5 [40 7 -22, [63 -50 7 [1051 1666 2441]] (1051c) −0.1562 0.1313 11.5

Music

Francium