Module:ET: Difference between revisions
Jump to navigation
Jump to search
Zeta shouldn't assume positive |
These all looked too dumb tbh |
||
(37 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
local rat = require( | local rat = require("Module:Rational") | ||
local seq = require( | local seq = require("Module:Sequence") | ||
local p = {} | local p = {} | ||
local common_suffix = { | local common_suffix = { | ||
[ | ["3/2"] = "f", | ||
[ | ["2"] = "o", | ||
[ | ["2/1"] = "o", | ||
[ | ["3"] = "t", | ||
[ | ["3/1"] = "t", | ||
} | } | ||
local common_ratio = { | local common_ratio = { | ||
[ | ["f"] = rat.new(3, 2), | ||
[ | ["o"] = 2, | ||
[ | ["t"] = 3, | ||
["ϕ"] = (1 + math.sqrt(5)) / 2, | |||
["n"] = math.exp(1), | |||
["π"] = math.pi | |||
} | } | ||
Line 24: | Line 28: | ||
local equave_ratio = rat.as_ratio(equave) | local equave_ratio = rat.as_ratio(equave) | ||
equave_ratio = equave_ratio:lower() | equave_ratio = equave_ratio:lower() | ||
suffix = | suffix = "ed" | ||
if common_suffix[equave_ratio] then | if common_suffix[equave_ratio] then | ||
suffix = suffix .. common_suffix[equave_ratio] | suffix = suffix .. common_suffix[equave_ratio] | ||
Line 38: | Line 42: | ||
-- parse a ET structure | -- parse a ET structure | ||
function p.parse(unparsed) | function p.parse(unparsed) | ||
local size, suffix, equave = unparsed:match( | local size, suffix, equave = unparsed:match("^(%d+%.*%d*)([Ee][Dd](.+))$") | ||
-- local size, suffix, equave = unparsed:match("^(%d+%.*%d*)([Cc]?[Ee][Dd]?[Tt]?(.*))$") | |||
if equave == nil then | if equave == nil then | ||
return nil | return nil | ||
Line 62: | Line 67: | ||
end | end | ||
return rat.as_float(et.equave) ^ (steps / et.size) | return rat.as_float(et.equave) ^ (steps / et.size) | ||
end | |||
function p.backslash_display(et, steps) | |||
if et.size == 0 then | |||
return 1 | |||
end | |||
return steps .. p.backslash_modifier(et) | |||
end | |||
function p.backslash_modifier(et) | |||
if not rat.eq(et.equave, 2) then | |||
return "\\" .. et.size .. et.suffix | |||
end | |||
return "\\" .. et.size | |||
end | end | ||
Line 71: | Line 90: | ||
steps = steps or 1 | steps = steps or 1 | ||
return 1200 * steps / et.size * math.log(rat.as_float(et.equave)) / math.log(2) | return 1200 * steps / et.size * math.log(rat.as_float(et.equave)) / math.log(2) | ||
end | |||
-- convert steps to hekts | |||
function p.hekts(et, steps) | |||
if et.size == 0 then | |||
return 0 | |||
end | |||
steps = steps or 1 | |||
return 1300 * steps / et.size * math.log(rat.as_float(et.equave)) / math.log(3) | |||
end | end | ||
Line 95: | Line 123: | ||
local t = 0 | local t = 0 | ||
for factor, power in pairs(ratio) do | for factor, power in pairs(ratio) do | ||
if type(factor) == | if type(factor) == "number" then | ||
t = t + power * p.approximate(et, factor) | t = t + power * p.approximate(et, factor) | ||
end | end | ||
Line 111: | Line 139: | ||
function p.is_zeta(et) | function p.is_zeta(et) | ||
return seq.contains(seq.zeta_peak, et.size) | return seq.contains(seq.zeta_peak, et.size) | ||
or seq.contains(seq.zeta_peak_integer, et.size) | |||
or seq.contains(seq.zeta_integral, et.size) | or seq.contains(seq.zeta_integral, et.size) | ||
or seq.contains(seq.zeta_gap, et.size) | or seq.contains(seq.zeta_gap, et.size) | ||
Line 118: | Line 147: | ||
function p.why_zeta(et) | function p.why_zeta(et) | ||
local zeta_peak = seq.contains(seq.zeta_peak, et.size) | local zeta_peak = seq.contains(seq.zeta_peak, et.size) | ||
local zeta_peak_integer = seq.contains(seq.zeta_peak_integer, et.size) | |||
local zeta_integral = seq.contains(seq.zeta_integral, et.size) | local zeta_integral = seq.contains(seq.zeta_integral, et.size) | ||
local zeta_gap = seq.contains(seq.zeta_gap, et.size) | local zeta_gap = seq.contains(seq.zeta_gap, et.size) | ||
local z = "The Riemann zeta function and tuning#Zeta EDO lists" | |||
local markers = {} | local markers = {} | ||
if zeta_peak then | if zeta_peak then | ||
table.insert(markers, | table.insert(markers, string.format("[[%s|Zeta peak]]", z)) | ||
elseif zeta_peak == nil then | elseif zeta_peak == nil then | ||
table.insert(markers, | table.insert(markers, string.format("[[%s|Zeta peak?]]", z)) | ||
end | |||
if zeta_peak_integer then | |||
table.insert(markers, string.format("[[%s|Zeta peak integer]]", z)) | |||
elseif zeta_peak_integer == nil then | |||
table.insert(markers, string.format("[[%s|Zeta peak integer?]]", z)) | |||
end | end | ||
if zeta_integral then | if zeta_integral then | ||
table.insert(markers, | table.insert(markers, string.format("[[%s|Zeta integral]]", z)) | ||
elseif zeta_integral == nil then | elseif zeta_integral == nil then | ||
table.insert(markers, | table.insert(markers, string.format("[[%s|Zeta integral?]]", z)) | ||
end | end | ||
if zeta_gap then | if zeta_gap then | ||
table.insert(markers, | table.insert(markers, string.format("[[%s|Zeta gap]]", z)) | ||
elseif zeta_gap == nil then | elseif zeta_gap == nil then | ||
table.insert(markers, | table.insert(markers, string.format("[[%s|Zeta gap?]]", z)) | ||
end | end | ||
return table.concat(markers, | |||
return table.concat(markers, "<br />") | |||
end | end | ||
return p | return p |
Latest revision as of 13:21, 19 July 2025
This module provides helper functions for equal-step tunings.
Functions
new
- Returns an array consisting of the components of an equal-step tuning.
parse
- Designed to convert strings in the format
[number of steps]ed[equave]
into an ET structure, and returns it via thenew
function. For example,ET.parse("12edo")
returns an array containing{12, 2, "edo"}
as_string
- Returns the string representation for an ET structure.
backslash_ratio
- Converts steps to a proper ratio as a floating-point number.
backslash_display
- Displays an ET structure in backslash form (
[steps]\[number of divisions]
).
cents
- Converts the interval an ET structure represents to cents.
hekts
- Converts the interval an ET structure represents to hekts (relative cent of 13edt).
approximate
- Returns the floor, round, or ceiling of a particular ratio.
tempers_out
- Determines if an ET tempers out a provided rational number.
is_highly_composite
- Determines if an ET is highly composite.
is_zeta
- Determines if an ET holds any zeta records.
why_zeta
- Describes what specific properties an ET has if it is a zeta record ET.
local rat = require("Module:Rational")
local seq = require("Module:Sequence")
local p = {}
local common_suffix = {
["3/2"] = "f",
["2"] = "o",
["2/1"] = "o",
["3"] = "t",
["3/1"] = "t",
}
local common_ratio = {
["f"] = rat.new(3, 2),
["o"] = 2,
["t"] = 3,
["ϕ"] = (1 + math.sqrt(5)) / 2,
["n"] = math.exp(1),
["π"] = math.pi
}
-- create a ET structure <size>ed<equave>
function p.new(size, equave, suffix)
size = size or 12
equave = equave or 2
if suffix == nil then
local equave_n, equave_m = rat.as_pair(equave)
local equave_ratio = rat.as_ratio(equave)
equave_ratio = equave_ratio:lower()
suffix = "ed"
if common_suffix[equave_ratio] then
suffix = suffix .. common_suffix[equave_ratio]
elseif equave_m == 1 then
suffix = suffix .. equave_n
else
suffix = suffix .. equave_ratio
end
end
return { size = size, equave = equave, suffix = suffix }
end
-- parse a ET structure
function p.parse(unparsed)
local size, suffix, equave = unparsed:match("^(%d+%.*%d*)([Ee][Dd](.+))$")
-- local size, suffix, equave = unparsed:match("^(%d+%.*%d*)([Cc]?[Ee][Dd]?[Tt]?(.*))$")
if equave == nil then
return nil
end
suffix = suffix:lower()
size = tonumber(size)
equave = common_ratio[equave] or rat.parse(equave)
if size == nil or equave == nil then
return nil
end
return p.new(size, equave, suffix)
end
-- construct a string representation for a ET structure
function p.as_string(et)
return et.size .. et.suffix
end
-- convert steps to a proper ratio (except that it is a float approximation)
function p.backslash_ratio(et, steps)
if et.size == 0 then
return 1
end
return rat.as_float(et.equave) ^ (steps / et.size)
end
function p.backslash_display(et, steps)
if et.size == 0 then
return 1
end
return steps .. p.backslash_modifier(et)
end
function p.backslash_modifier(et)
if not rat.eq(et.equave, 2) then
return "\\" .. et.size .. et.suffix
end
return "\\" .. et.size
end
-- convert steps to cents
function p.cents(et, steps)
if et.size == 0 then
return 0
end
steps = steps or 1
return 1200 * steps / et.size * math.log(rat.as_float(et.equave)) / math.log(2)
end
-- convert steps to hekts
function p.hekts(et, steps)
if et.size == 0 then
return 0
end
steps = steps or 1
return 1300 * steps / et.size * math.log(rat.as_float(et.equave)) / math.log(3)
end
-- convert ratio to steps
-- ratio is a float!
-- towards is one of: -1 (floor), 0 (nearest), 1 (ceil)
function p.approximate(et, ratio, towards)
towards = towards or 0
if et.size == 0 then
return 0
end
local exact = math.log(ratio) / math.log(rat.as_float(et.equave)) * et.size
if towards < 0 then
return math.floor(exact)
elseif towards > 0 then
return math.ceil(exact)
else
return math.floor(exact + 0.5)
end
end
-- whether this ET tempers out the provided rational number
function p.tempers_out(et, ratio)
local t = 0
for factor, power in pairs(ratio) do
if type(factor) == "number" then
t = t + power * p.approximate(et, factor)
end
end
return t == 0
end
-- determine whether ET is highly composite
function p.is_highly_composite(et)
et.highly_composite = et.highly_composite or rat.is_highly_composite(et.size)
return et.highly_composite
end
-- determine whether ET's size could be within one of zeta function-related sequences
function p.is_zeta(et)
return seq.contains(seq.zeta_peak, et.size)
or seq.contains(seq.zeta_peak_integer, et.size)
or seq.contains(seq.zeta_integral, et.size)
or seq.contains(seq.zeta_gap, et.size)
end
-- describe why
function p.why_zeta(et)
local zeta_peak = seq.contains(seq.zeta_peak, et.size)
local zeta_peak_integer = seq.contains(seq.zeta_peak_integer, et.size)
local zeta_integral = seq.contains(seq.zeta_integral, et.size)
local zeta_gap = seq.contains(seq.zeta_gap, et.size)
local z = "The Riemann zeta function and tuning#Zeta EDO lists"
local markers = {}
if zeta_peak then
table.insert(markers, string.format("[[%s|Zeta peak]]", z))
elseif zeta_peak == nil then
table.insert(markers, string.format("[[%s|Zeta peak?]]", z))
end
if zeta_peak_integer then
table.insert(markers, string.format("[[%s|Zeta peak integer]]", z))
elseif zeta_peak_integer == nil then
table.insert(markers, string.format("[[%s|Zeta peak integer?]]", z))
end
if zeta_integral then
table.insert(markers, string.format("[[%s|Zeta integral]]", z))
elseif zeta_integral == nil then
table.insert(markers, string.format("[[%s|Zeta integral?]]", z))
end
if zeta_gap then
table.insert(markers, string.format("[[%s|Zeta gap]]", z))
elseif zeta_gap == nil then
table.insert(markers, string.format("[[%s|Zeta gap?]]", z))
end
return table.concat(markers, "<br />")
end
return p