65edt: Difference between revisions
Created page with "'''Division of the third harmonic into 65 equal parts''' (65edt) is related to 41 edo, but with the 3/1 rather than the 2/1 being just. The octave is about 0..." Tags: Mobile edit Mobile web edit |
m →Theory: prime 3 |
||
(15 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
{{Infobox ET}} | |||
{{ED intro}} | |||
{| class="wikitable" | == Theory == | ||
65edt is almost identical to [[41edo]], but with the perfect twelfth rather than the [[2/1|octave]] being just. The octave is about 0.305 cents compressed. Like 41edo, 65edt is [[consistent]] to the [[integer limit|16-integer-limit]], and in comparison, it improves the intonation of primes 3, [[11/1|11]], [[13/1|13]], and [[17/1|17]] at the expense of less accurate intonations of 2, [[5/1|5]], [[7/1|7]], and [[19/1|19]], commending itself as a suitable tuning for [[13-limit|13-]] and [[17-limit]]-focused harmonies. | |||
=== Harmonics === | |||
{{Harmonics in equal|65|3|1|intervals=integer}} | |||
{{Harmonics in equal|65|3|1|intervals=integer|columns=12|start=12|collapsed=true|Approximation of harmonics in 65edt (continued)}} | |||
=== Subsets and supersets === | |||
Since 65 factors into primes as {{nowrap| 5 × 13 }}, 65edt contains [[5edt]] and [[13edt]] as subset edts. | |||
== Intervals == | |||
{| class="wikitable center-1 right-2 right-3" | |||
|- | |- | ||
! | ! # | ||
! | ! Cents | ||
! | ! Hekts | ||
! | ! Approximate ratios | ||
|- | |- | ||
| | 0 | | 0 | ||
| 0.0 | |||
| | | 0.0 | ||
| 1/1 | |||
|- | |- | ||
| 1 | |||
| 29.3 | |||
| | | | 20.0 | ||
| [[49/48]], [[50/49]], [[64/63]], [[81/80]] | |||
|- | |- | ||
| 2 | |||
| 58.5 | |||
| | | | 40.0 | ||
| [[25/24]], [[28/27]], [[33/32]], [[36/35]] | |||
|- | |- | ||
| 3 | |||
| 87.8 | |||
| | [[21/20]], [[ | | 60.0 | ||
| [[19/18]], [[20/19]], [[21/20]], [[22/21]] | |||
|- | |- | ||
| 4 | |||
| 117.0 | |||
| | [[15/14]] | | 80.0 | ||
| [[14/13]], [[15/14]], [[16/15]] | |||
|- | |- | ||
| 5 | |||
| 146.3 | |||
| | | | 100.0 | ||
| [[12/11]], [[13/12]] | |||
|- | |- | ||
| 6 | |||
| 175.6 | |||
| | [[ | | 120.0 | ||
| [[10/9]], [[11/10]], [[21/19]] | |||
|- | |- | ||
| 7 | |||
| 204.8 | |||
| | [[9/8]] | | 140.0 | ||
| [[9/8]] | |||
|- | |- | ||
| 8 | |||
| 234.1 | |||
| | [[8/7]] | | 160.0 | ||
| [[8/7]], [[15/13]] | |||
|- | |- | ||
| 9 | |||
| 263.3 | |||
| | [[7/6]] | | 180.0 | ||
| [[7/6]], [[22/19]] | |||
|- | |- | ||
| 10 | |||
| 292.6 | |||
| | | | 200.0 | ||
| [[13/11]], [[19/16]], [[32/27]] | |||
|- | |- | ||
| 11 | |||
| 321.9 | |||
| | | 220.0 | ||
| | | [[6/5]] | ||
|- | |- | ||
| 12 | |||
| 351.1 | |||
| | [[11/9]], | | 240.0 | ||
| [[11/9]], [[16/13]] | |||
|- | |- | ||
| 13 | |||
| 380.4 | |||
| | | 260.0 | ||
| | | [[5/4]], [[26/21]] | ||
|- | |- | ||
| 14 | |||
| 409.7 | |||
| | [[19/15]] | | 280.0 | ||
| [[14/11]], [[19/15]], [[24/19]] | |||
|- | |- | ||
| 15 | |||
| 438.9 | |||
| | [[9/7]] | | 300.0 | ||
| [[9/7]], [[32/25]] | |||
|- | |- | ||
| 16 | |||
| 468.2 | |||
| | [[21/16]] | | 320.0 | ||
| [[21/16]], [[13/10]] | |||
|- | |- | ||
| 17 | |||
| 497.4 | |||
| | [[4/3]] | | 340.0 | ||
| [[4/3]] | |||
|- | |- | ||
| 18 | |||
| 526.7 | |||
| | [[19/14]] | | 360.0 | ||
| [[15/11]], [[19/14]], [[27/20]] | |||
|- | |- | ||
| 19 | |||
| | | | 556.0 | ||
| | | 380.0 | ||
| [[11/8]], [[18/13]], [[26/19]] | |||
|- | |- | ||
| 20 | |||
| 585.2 | |||
| | [[7/5]] | | 400.0 | ||
| [[7/5]], [[45/32]] | |||
|- | |- | ||
| 21 | |||
| 614.5 | |||
| | [[10/7]] | | 420.0 | ||
| [[10/7]], [[64/45]] | |||
|- | |- | ||
| 22 | |||
| 643.7 | |||
| | | | 440.0 | ||
| [[13/9]], [[16/11]], [[19/13]] | |||
|- | |- | ||
| 23 | |||
| | | | 673.0 | ||
| | | 460.0 | ||
| [[22/15]], [[28/19]], [[40/27]] | |||
|- | |- | ||
| 24 | |||
| 702.3 | |||
| | [[3/2]] | | 480.0 | ||
| [[3/2]] | |||
|- | |- | ||
| 25 | |||
| 731.5 | |||
| | [[32/21]] | | 500.0 | ||
| [[20/13]], [[32/21]] | |||
|- | |- | ||
| 26 | |||
| 760.8 | |||
| | | | 520.0 | ||
| [[14/9]], [[25/16]] | |||
|- | |- | ||
| 27 | |||
| 790.0 | |||
| | [[30/19]] | | 540.0 | ||
| [[11/7]], [[19/12]], [[30/19]] | |||
|- | |- | ||
| 28 | |||
| 819.3 | |||
| | | 560.0 | ||
| | | [[8/5]], [[21/13]] | ||
|- | |- | ||
| 29 | |||
| 848.6 | |||
| | [[18/11]] | | 580.0 | ||
| [[13/8]], [[18/11]] | |||
|- | |- | ||
| 30 | |||
| 877.8 | |||
| | | 600.0 | ||
| | | [[5/3]] | ||
|- | |- | ||
| 31 | |||
| 907.1 | |||
| | [[27/16]] | | 620.0 | ||
| [[22/13]], [[27/16]], [[32/19]] | |||
|- | |- | ||
| 32 | |||
| 936.3 | |||
| | [[12/7]] | | 640.0 | ||
| [[12/7]], [[19/11]] | |||
|- | |- | ||
| 33 | |||
| 965.6 | |||
| | [[7/4]] | | 660.0 | ||
| [[7/4]], [[26/15]] | |||
|- | |- | ||
| 34 | |||
| 994.9 | |||
| | [[16/9]] | | 680.0 | ||
| [[16/9]] | |||
|- | |- | ||
| 35 | |||
| 1024.1 | |||
| | | 700.0 | ||
| | | [[9/5]] | ||
|- | |- | ||
| 36 | |||
| 1053.4 | |||
| | [[11/6]] | | 720.0 | ||
| [[11/6]] | |||
|- | |- | ||
| 37 | |||
| 1082.7 | |||
| | [[ | | 740.0 | ||
| [[13/7]], [[15/8]] | |||
|- | |- | ||
| 38 | |||
| 1111.9 | |||
| | [[19/10]] | | 760.0 | ||
| [[19/10]], [[21/11]] | |||
|- | |- | ||
| 39 | |||
| 1141.2 | |||
| | | | 780.0 | ||
| [[27/14]], [[35/18]] | |||
|- | |- | ||
| 40 | |||
| 1170.4 | |||
| | 55/28 | | 800.0 | ||
| [[49/25]], [[55/28]], [[63/32]] | |||
|- | |- | ||
| 41 | |||
| 1199.7 | |||
| | [[ | | 820.0 | ||
| [[2/1]] | |||
|- | |- | ||
| 42 | |||
| | | | 1229.0 | ||
| | | 840.0 | ||
| [[45/22]], [[49/24]], [[55/27]], [[81/40]] | |||
|- | |- | ||
| 43 | |||
| 1258.2 | |||
| | | | 860.0 | ||
| [[25/12]], [[33/16]] | |||
|- | |- | ||
| 44 | |||
| 1287.5 | |||
| | 21/10 | | 880.0 | ||
| [[19/9]], [[21/10]] | |||
|- | |- | ||
| 45 | |||
| 1316.7 | |||
| | [[15/7]] | | 900.0 | ||
| [[15/7]] | |||
|- | |- | ||
| 46 | |||
| | | | 1346.0 | ||
| | | 920.0 | ||
| [[13/6]] | |||
|- | |- | ||
| 47 | |||
| 1375.3 | |||
| | | | 940.0 | ||
| [[11/5]] | |||
|- | |- | ||
| 48 | |||
| 1404.5 | |||
| | [[9/4]] | | 960.0 | ||
| [[9/4]] | |||
|- | |- | ||
| 49 | |||
| 1433.8 | |||
| | [[16/7]] | | 980.0 | ||
| [[16/7]] | |||
|- | |- | ||
| 50 | |||
| 1463.0 | |||
| | [[7/3]] | | 1000.0 | ||
| [[7/3]] | |||
|- | |- | ||
| 51 | |||
| 1492.3 | |||
| | | | 1020.0 | ||
| [[19/8]] | |||
|- | |- | ||
| 52 | |||
| 1521.6 | |||
| | | 1040.0 | ||
| | | [[12/5]] | ||
|- | |- | ||
| 53 | |||
| 1550.8 | |||
| | 22/9, 27/11 | | 1060.0 | ||
| [[22/9]], [[27/11]] | |||
|- | |- | ||
| 54 | |||
| 1580.1 | |||
| | | 1080.0 | ||
| | | [[5/2]] | ||
|- | |- | ||
| 55 | |||
| 1609.3 | |||
| | | | 1100.0 | ||
| [[28/11]], [[33/13]] | |||
|- | |- | ||
| 56 | |||
| 1638.6 | |||
| | 18/7 | | 1120.0 | ||
| [[18/7]] | |||
|- | |- | ||
| 57 | |||
| 1667.9 | |||
| | 21/8 | | 1140.0 | ||
| [[21/8]] | |||
|- | |- | ||
| 58 | |||
| 1697.1 | |||
| | [[8/3]] | | 1160.0 | ||
| [[8/3]] | |||
|- | |- | ||
| 59 | |||
| 1726.4 | |||
| | 19/7 | | 1180.0 | ||
| [[19/7]] | |||
|- | |- | ||
| 60 | |||
| 1755.7 | |||
| | [[11/4]] | | 1200.0 | ||
| [[11/4]] | |||
|- | |- | ||
| 61 | |||
| 1784.9 | |||
| | [[14/5]] | | 1220.0 | ||
| [[14/5]] | |||
|- | |- | ||
| 62 | |||
| 1814.2 | |||
| | 20/7 | | 1240.0 | ||
| [[20/7]] | |||
|- | |- | ||
| 63 | |||
| 1843.4 | |||
| | | | 1260.0 | ||
| [[26/9]] | |||
|- | |- | ||
| 64 | |||
| 1872.7 | |||
| | | | 1280.0 | ||
| [[44/15]] | |||
|- | |- | ||
| 65 | |||
| | | | 1902.0 | ||
| | | 1300.0 | ||
| [[3/1]] | |||
|} | |} | ||
[[ | == See also == | ||
[[Category: | * [[24edf]] – relative edf | ||
* [[41edo]] – relative edo | |||
* [[95ed5]] – relative ed5 | |||
* [[106ed6]] – relative ed6 | |||
* [[147ed12]] – relative ed12 | |||
* [[361ed448]] – close to the zeta-optimized tuning for 41edo | |||
[[Category:41edo]] |