Module:Utils: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Plumtree (talk | contribs)
prime_factorization_raw() added for use in other modules
ArrowHead294 (talk | contribs)
mNo edit summary
 
(45 intermediate revisions by 6 users not shown)
Line 1: Line 1:
local getArgs = require('Module:Arguments').getArgs
local p = {}
local p = {}


-- evaluate input on error use default; cannot be used with {{#invoke:}}
local get_args = require("Module:Arguments").getArgs
local yesno = require("Module:Yesno")
 
-- Trim a string (remove leading and trailing, but not interior, whitespace)
function p.trim(s)
  return s:match("^%s*(.-)%s*$")
end
 
-- Wrapper function for template access to [[Module:Yesno]]
function p._yesno(frame)
return yesno(frame.args["input"], frame.args["default"])
end
 
-- Check if a table contains x
function p.table_contains(tbl, x)
for i = 1, #tbl do
if x == tbl[i] then
return true
end
end
return false
end
 
-- Return the first index with the given value (or nil if not found)
function p.index_of(array, value)
for i, v in ipairs(array) do
if v == value then
return i
end
end
return nil
end
 
-- Check whether the input is a non-empty string
function p.value_provided(s)
return type(s) == "string" and #s > 0
end
 
-- Evaluate input on error use default; cannot be used with {{#invoke:}}
function p.eval_num_arg(input, def_value)
function p.eval_num_arg(input, def_value)
local result = input
local result = input
if type(input) ~= 'number' then
if type(input) ~= "number" then
result = def_value
result = def_value
if type(input) == 'string' then
if type(input) == "string" then
-- check for fraction notation
-- Check for fraction notation
if input:match('/') == '/' then
if input:match("/") == "/" then
local denominator = 1
local numerator, denominator = input:match("^%s*([0-9]+)[/?]([0-9]+)%s*$")
input, denominator = input:match("^%s*([0-9]+)[/?]([0-9]+)%s*$")
result = (tonumber(numerator) or def_value) / (tonumber(denominator) or 1)
result = (tonumber(input) or def_value)/(tonumber(denominator) or 1)
else
else
input = input:match("^%s*(.-)%s*$")
result = tonumber(input)
result = tonumber(input)
end
end
Line 22: Line 57:
end
end


-- return logarithm base b of x
-- Return logarithm base b of x
function p.log(frame)
function p.log(frame)
local args = getArgs(frame)
local args = get_args(frame)
return p._log(args[1], args[2])
return p._log(args[1], args[2])
end
end
 
local LN_2 = math.log(2)
-- Return logarithm base 2 of x
function p.log2(x)
return math.log(x) / LN_2
end


function p._log(x, b)
function p._log(x, b)
Line 33: Line 74:
-- b defaults to 2 ("octave")
-- b defaults to 2 ("octave")
b = p.eval_num_arg(b, 2)
b = p.eval_num_arg(b, 2)
return math.log(x)/math.log(b)
return math.log(x) / math.log(b)
end
 
-- Return greatest common divisor of a and b
function p.gcd(frame)
local args = get_args(frame)
return p._gcd(args[1], args[2])
end
 
function p._gcd(a, b)
if b ~= 0 then
return p._gcd(b, a % b)
else
return math.abs(a)
end
end
end


-- return x rounded to a precision of prec significant figures
-- Return x rounded to places decimal places
function p.round_dec(frame)
local args = get_args(frame)
return p._round_dec(args[1], args[2])
end
 
function p._round_dec(x, places)
-- x defaults to 0
x = p.eval_num_arg(x, 0)
-- places defaults to 0
places = p.eval_num_arg(places, 0)
return math.floor(x * 10 ^ places + 0.5) / 10 ^ places
end
 
-- Return x rounded to a precision of prec significant figures
function p.round(frame)
function p.round(frame)
local args = getArgs(frame)
local args = get_args(frame)
return p._round(args[1], args[2])
return p._round(args[1], args[2])
end
end


function p._round(x, prec)
function p._round(x, prec)
Line 47: Line 116:
-- prec defaults to 6
-- prec defaults to 6
prec = p.eval_num_arg(prec, 6)
prec = p.eval_num_arg(prec, 6)
return string.format(string.format("%%.%dg", prec), x)
if x == 0 then
return 0
else
return p._round_dec(x, prec - math.floor(p._log(math.abs(x), 10)) - 1)
end
end
end


-- cached list of primes for is_prime
-- Cached list of primes for is_prime
local primes = {}
local primes_cache = {
[0] = false,
[1] = false,
}


-- returns true if integer n is prime; cannot be used with {{#invoke:}}
-- Returns true if integer n is prime; cannot be used with {{#invoke:}}
function p.is_prime(n)
function p.is_prime(n)
local cached = primes[n]
local cached = primes_cache[n]
if cached ~= nil then
if cached ~= nil then
return cached
return cached
Line 61: Line 137:
for i = 2, math.sqrt(n) do
for i = 2, math.sqrt(n) do
if n % i == 0 then
if n % i == 0 then
primes[n] = false
primes_cache[n] = false
return false
return false
end
end
end
end
primes[n] = true
primes_cache[n] = true
return true  
return true
end
end


-- returns prime factorization of integer n > 1; cannot be used with {{#invoke:}}
-- Returns prime factorization of integer n > 1; cannot be used with {{#invoke:}}
-- note: the order of keys is not specified for Lua tables
-- Note: the order of keys is not specified for Lua tables
function p.prime_factorization_raw(n)
function p.prime_factorization_raw(n)
local factors = {}
local factors = {}
local m = n
local m = n
for i = 2, n do
for i = 2, math.sqrt(n) + 1 do
while m % i == 0 do
while m % i == 0 do
factors[i] = factors[i] or 0
factors[i] = factors[i] or 0
Line 83: Line 159:
break
break
end
end
end
if m > 1 then
factors[m] = factors[m] or 1
end
end
return factors
return factors
end
end


-- returns prime factorization of integer n > 2 (with wiki markup for exponents)
-- Returns prime factorization of integer n > 2 (with wiki markup for exponents)
function p.prime_factorization(frame)
function p.prime_factorization(frame)
local args = getArgs(frame)
local args = get_args(frame)
return p._prime_factorization(args[1])
return p._prime_factorization(p.eval_num_arg(args[1], 12)) -- default to 12
end
end


function p._prime_factorization(n)
function p._prime_factorization(n)
if n <= 1 then
return "n/a"
end
local factors, powers = {}, {}
local factors, powers = {}, {}
local new_number = p.eval_num_arg(n, 12)
local new_number = n
for i = 2, n do
for i = 2, n do
if p.is_prime(i) then
if p.is_prime(i) then
Line 101: Line 183:
factors[#factors + 1] = i
factors[#factors + 1] = i
powers[#factors] = 0
powers[#factors] = 0
while new_number % i == 0 do  
while new_number % i == 0 do
powers[#factors] = powers[#factors] + 1
powers[#factors] = powers[#factors] + 1
new_number = new_number / i
new_number = new_number / i
Line 118: Line 200:
return table.concat(powers, " × ")
return table.concat(powers, " × ")
end
end
-- Returns signum(x); cannot be used with {{#invoke:}}
function p.signum(x)
if type(x) ~= "number" then
return 0
end
if x > 0 then
return 1
end
if x < 0 then
return -1
end
return 0
end
-- Returns the next Young diagram of the same size or nil; cannot be used with {{#invoke:}}
-- Modifies the input table
function p.next_young_diagram(d)
if #d == 0 then
return nil
end
local i_from = nil
local size = 0
for i = #d, 1, -1 do
if d[i] > 1 then
i_from = i
break
end
size = size + d[i]
end
if i_from == nil then
return nil
end
d[i_from] = d[i_from] - 1
size = size + 1
-- repacking the tail
local max_d = d[i_from]
for i = i_from + 1, #d + 1 do
if size >= max_d then
d[i] = max_d
size = size - max_d
elseif size > 0 then
d[i] = size
size = 0
else
d[i] = nil
end
end
return d
end
-- stylua: ignore
p.primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
  101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
  211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271}


return p
return p

Latest revision as of 01:36, 10 June 2025

Module documentation[view] [edit] [history] [purge]

This module provides several mathematical functions which are likely to be used frequently on the Xenharmonic Wiki.

Namely, the functions in this module can be called from other modules by using require("Module:Utils") and calling the underscore-prefixed functions.

Functions

trim(s)
Removes leading and trailing whitespaces (but not interior ones) from a string.
_yesno(frame)
Allows Module:Yesno, which is not invokable directly, to be accessed by templates through Template:Yesno.
table_contains(tbl, x)*
Check if table contains x.
index_of(array, index)*
Return the first index with the given value (or nil if not found).
value_provided(s)*
Checks if s is a non-empty string.
wlink(a, b)
Provides a link to Wikipedia.
eval_num_arg(input, def_value)*
Checks if input is a number; on error, use def_value.
log(x, b)
Returns the logarithm base b of x. Parameter b defaults to base 2 (octave) if it is omitted.
gcd(a, b)
Returns the greatest common divisor of a and b.
round_dec(x, places)
Returns x rounded to a precision of places decimal places. Parameter places defaults to 0 if it is omitted.
round(x, prec)
Returns x rounded to a precision of prec significant figures. Parameter prec defaults to 6 if it is omitted.
is_prime(n)*
Returns true if the given integer n is a prime number.
prime_factorization(n)
Returns the prime factorization of the given integer n using the exponential form (in wikitext).
prime_factorization_raw(n)*
Returns a table encoding the prime factorization of n.
signum(x)*
Returns 1 for positive numbers, −1 for negative ones, and 0 for zero and non-integer inputs.
next_young_diagram(d)
Returns the next Young diagram of the same size; the first one is [N], the last one is [1, 1, ..., 1]. After the last one, nil is returned. The input table is modified.


* These functions are designed to be used by other modules only; they cannot be called with {{#invoke: }}.


local p = {}

local get_args = require("Module:Arguments").getArgs
local yesno = require("Module:Yesno")

-- Trim a string (remove leading and trailing, but not interior, whitespace)
function p.trim(s)
   return s:match("^%s*(.-)%s*$")
end

-- Wrapper function for template access to [[Module:Yesno]]
function p._yesno(frame)
	return yesno(frame.args["input"], frame.args["default"])
end

-- Check if a table contains x
function p.table_contains(tbl, x)
	for i = 1, #tbl do
		if x == tbl[i] then
			return true
		end
	end
	return false
end

-- Return the first index with the given value (or nil if not found)
function p.index_of(array, value)
	for i, v in ipairs(array) do
		if v == value then
			return i
		end
	end
	return nil
end

-- Check whether the input is a non-empty string
function p.value_provided(s)
	return type(s) == "string" and #s > 0
end

-- Evaluate input on error use default; cannot be used with {{#invoke:}}
function p.eval_num_arg(input, def_value)
	local result = input
	if type(input) ~= "number" then
		result = def_value
		if type(input) == "string" then
			-- Check for fraction notation
			if input:match("/") == "/" then
				local numerator, denominator = input:match("^%s*([0-9]+)[/?]([0-9]+)%s*$")
				result = (tonumber(numerator) or def_value) / (tonumber(denominator) or 1)
			else
				result = tonumber(input)
			end
		end
	end
	return result
end

-- Return logarithm base b of x
function p.log(frame)
	local args = get_args(frame)
	return p._log(args[1], args[2])
end

local LN_2 = math.log(2)
-- Return logarithm base 2 of x
function p.log2(x)
	return math.log(x) / LN_2
end

function p._log(x, b)
	-- x defaults to 0
	x = p.eval_num_arg(x, 0)
	-- b defaults to 2 ("octave")
	b = p.eval_num_arg(b, 2)
	return math.log(x) / math.log(b)
end

-- Return greatest common divisor of a and b
function p.gcd(frame)
	local args = get_args(frame)
	return p._gcd(args[1], args[2])
end

function p._gcd(a, b)
	if b ~= 0 then
		return p._gcd(b, a % b)
	else
		return math.abs(a)
	end
end

-- Return x rounded to places decimal places
function p.round_dec(frame)
	local args = get_args(frame)
	return p._round_dec(args[1], args[2])
end

function p._round_dec(x, places)
	-- x defaults to 0
	x = p.eval_num_arg(x, 0)
	-- places defaults to 0
	places = p.eval_num_arg(places, 0)
	return math.floor(x * 10 ^ places + 0.5) / 10 ^ places
end

-- Return x rounded to a precision of prec significant figures
function p.round(frame)
	local args = get_args(frame)
	return p._round(args[1], args[2])
end

function p._round(x, prec)
	-- x defaults to 0
	x = p.eval_num_arg(x, 0)
	-- prec defaults to 6
	prec = p.eval_num_arg(prec, 6)
	if x == 0 then
		return 0
	else
		return p._round_dec(x, prec - math.floor(p._log(math.abs(x), 10)) - 1)
	end
end

-- Cached list of primes for is_prime
local primes_cache = {
	[0] = false,
	[1] = false,
}

-- Returns true if integer n is prime; cannot be used with {{#invoke:}}
function p.is_prime(n)
	local cached = primes_cache[n]
	if cached ~= nil then
		return cached
	end
	for i = 2, math.sqrt(n) do
		if n % i == 0 then
			primes_cache[n] = false
			return false
		end
	end
	primes_cache[n] = true
	return true
end

-- Returns prime factorization of integer n > 1; cannot be used with {{#invoke:}}
-- Note: the order of keys is not specified for Lua tables
function p.prime_factorization_raw(n)
	local factors = {}
	local m = n
	for i = 2, math.sqrt(n) + 1 do
		while m % i == 0 do
			factors[i] = factors[i] or 0
			factors[i] = factors[i] + 1
			m = m / i
		end
		if m == 1 then
			break
		end
	end
	if m > 1 then
		factors[m] = factors[m] or 1
	end
	return factors
end

-- Returns prime factorization of integer n > 2 (with wiki markup for exponents)
function p.prime_factorization(frame)
	local args = get_args(frame)
	return p._prime_factorization(p.eval_num_arg(args[1], 12)) -- default to 12
end

function p._prime_factorization(n)
	if n <= 1 then
		return "n/a"
	end
	local factors, powers = {}, {}
	local new_number = n
	for i = 2, n do
		if p.is_prime(i) then
			if new_number % i == 0 then
				factors[#factors + 1] = i
				powers[#factors] = 0
				while new_number % i == 0 do
					powers[#factors] = powers[#factors] + 1
					new_number = new_number / i
				end
				if powers[#factors] > 1 then
					powers[#factors] = factors[#factors] .. "<sup>" .. powers[#factors] .. "</sup>"
				else
					powers[#factors] = factors[#factors]
				end
			end
		end
		if new_number == 1 then
			break
		end
	end
	return table.concat(powers, " × ")
end

-- Returns signum(x); cannot be used with {{#invoke:}}
function p.signum(x)
	if type(x) ~= "number" then
		return 0
	end
	if x > 0 then
		return 1
	end
	if x < 0 then
		return -1
	end
	return 0
end

-- Returns the next Young diagram of the same size or nil; cannot be used with {{#invoke:}}
-- Modifies the input table
function p.next_young_diagram(d)
	if #d == 0 then
		return nil
	end
	local i_from = nil
	local size = 0
	for i = #d, 1, -1 do
		if d[i] > 1 then
			i_from = i
			break
		end
		size = size + d[i]
	end
	if i_from == nil then
		return nil
	end
	d[i_from] = d[i_from] - 1
	size = size + 1
	-- repacking the tail
	local max_d = d[i_from]
	for i = i_from + 1, #d + 1 do
		if size >= max_d then
			d[i] = max_d
			size = size - max_d
		elseif size > 0 then
			d[i] = size
			size = 0
		else
			d[i] = nil
		end
	end
	return d
end

-- stylua: ignore
p.primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
			   101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
			   211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271}

return p