307edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Francium (talk | contribs)
Music: +links
ArrowHead294 (talk | contribs)
mNo edit summary
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{EDO intro|307}}
{{ED intro}}
 
== Theory ==
== Theory ==
307et tempers out 1220703125/1219784832, 48828125/48771072, 95703125/95551488 and [[2401/2400]] in the 7-limit; 100663296/100656875, 939524096/935859375, [[16384/16335]], 226492416/226474325, 2359296/2358125, [[6250/6237]], 172032/171875, 42875/42768, 4302592/4296875, 15488/15435, 3388/3375, 766656/765625, 166375/165888, 391314/390625, 3294225/3294172, 43923/43904 and 102487/102400 in the 11-limit.
307edo is [[consistent]] to the [[7-odd-limit]], but [[harmonic]] [[3/1|3]] is about halfway between its steps. It can be considered in either the 2.9.5.7 [[subgroup]] or the 2.9.15.21 subgroup, but the former is more flexible as it lends itself to an [[extension]] to the 2.9.5.7.11.13.17.19.23.
===Odd harmonics===
 
Using the full 7-limit [[patent val]] nonetheless, the equal temperament [[tempering out|tempers out]] [[2401/2400]] in the 7-limit, and in the 11-limit extension, [[3388/3375]], [[6250/6237]], 15488/15435, [[16384/16335]], and 43923/43904.
 
=== Odd harmonics ===
{{Harmonics in equal|307}}
{{Harmonics in equal|307}}
===Subsets and supersets===
 
=== Subsets and supersets ===
307edo is the 63rd [[prime edo]]. [[614edo]], which doubles it, gives a good correction to the harmonic 3.
307edo is the 63rd [[prime edo]]. [[614edo]], which doubles it, gives a good correction to the harmonic 3.
==Regular temperament properties==
 
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" |[[Subgroup]]
! rowspan="2" |[[Comma list|Comma List]]
! rowspan="2" |[[Mapping]]
! rowspan="2" |Optimal<br>8ve Stretch (¢)
! colspan="2" |Tuning Error
|-
![[TE error|Absolute]] (¢)
![[TE simple badness|Relative]] (%)
|-
|-
|2.9
! rowspan="2" | [[Subgroup]]
|{{monzo|-973 307}}
! rowspan="2" | [[Comma list]]
|{{val|307 973}}
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.9
| {{monzo| -973 307 }}
| {{mapping| 307 973 }}
| +0.1029
| +0.1029
| 0.1030
| 0.1030
| 2.64
| 2.64
|-
|-
|2.9.5
| 2.9.5
|32805/32768, {{monzo|2 47 -65}}
| 32805/32768, {{monzo| 2 47 -65 }}
|{{val|307 973 713}}
| {{mapping|307 973 713 }}
| -0.0257
| −0.0257
| 0.2004
| 0.2004
| 5.13
| 5.13
|-
|-
|2.9.5.7
| 2.9.5.7
|32805/32768, 118098/117649, 589824/588245
| 32805/32768, 118098/117649, 589824/588245
|{{val|307 973 713 862}}
| {{mapping| 307 973 713 862 }}
| -0.0687
| −0.0687
| 0.1889
| 0.1889
| 4.87
| 4.87
|-
|-
|2.9.5.7.11
| 2.9.5.7.11
|5632/5625, 8019/8000, 32805/32768, 46656/46585
| 5632/5625, 8019/8000, 32805/32768, 46656/46585
|{{val|307 973 713 862 1062}}
| {{mapping| 307 973 713 862 1062 }}
| -0.0447
| −0.0447
| 0.1756
| 0.1756
| 4.49
| 4.49
|-
|-
|2.9.5.7.11.13
| 2.9.5.7.11.13
|729/728, 1001/1000, 4096/4095, 6656/6655, 10648/10647
| 729/728, 1001/1000, 4096/4095, 6656/6655, 10648/10647
|{{val|307 973 713 862 1062 1136}}
| {{mapping| 307 973 713 862 1062 1136 }}
| -0.0311
| −0.0311
| 0.1632
| 0.1632
| 4.18
| 4.18
|-
|-
|2.9.5.7.11.13.17
| 2.9.5.7.11.13.17
|729/728, 936/935, 1001/1000, 1377/1375, 2025/2023, 7744/7735
| 729/728, 936/935, 1001/1000, 1377/1375, 2025/2023, 7744/7735
|{{val|307 973 713 862 1062 1136 1255}}
| {{mapping| 307 973 713 862 1062 1136 1255 }}
| -0.0470
| −0.0470
| 0.1560
| 0.1560
| 3.99
| 3.99
Line 63: Line 70:
== Music ==
== Music ==
; [[Francium]]
; [[Francium]]
* "Broken Music From A Broken Mind" from ''Melancholie'' (2023) [https://open.spotify.com/track/3FBm2hcuQwuH5rNjQ9IOZ9 Spotify] | [https://francium223.bandcamp.com/track/broken-music-from-a-broken-mind Bandcamp] | [https://www.youtube.com/watch?v=CKq9y6qk10g YouTube]
* "Broken Music From A Broken Mind" from ''Melancholie'' (2023) [https://open.spotify.com/track/3FBm2hcuQwuH5rNjQ9IOZ9 Spotify] | [https://francium223.bandcamp.com/track/broken-music-from-a-broken-mind Bandcamp] | [https://www.youtube.com/watch?v=CKq9y6qk10g YouTube]
* "Naughty Unicorn" from ''You Are A...'' (2024) – [https://open.spotify.com/track/0c4QHJKHWYb7ErWHRXs0BA Spotify] | [https://francium223.bandcamp.com/track/naughty-unicorn Bandcamp] | [https://www.youtube.com/watch?v=wGfydgfwreQ YouTube]
 
[[Category:Listen]]

Latest revision as of 12:42, 21 February 2025

← 306edo 307edo 308edo →
Prime factorization 307 (prime)
Step size 3.90879 ¢ 
Fifth 180\307 (703.583 ¢)
Semitones (A1:m2) 32:21 (125.1 ¢ : 82.08 ¢)
Dual sharp fifth 180\307 (703.583 ¢)
Dual flat fifth 179\307 (699.674 ¢)
Dual major 2nd 52\307 (203.257 ¢)
Consistency limit 7
Distinct consistency limit 7

307 equal divisions of the octave (abbreviated 307edo or 307ed2), also called 307-tone equal temperament (307tet) or 307 equal temperament (307et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 307 equal parts of about 3.91 ¢ each. Each step represents a frequency ratio of 21/307, or the 307th root of 2.

Theory

307edo is consistent to the 7-odd-limit, but harmonic 3 is about halfway between its steps. It can be considered in either the 2.9.5.7 subgroup or the 2.9.15.21 subgroup, but the former is more flexible as it lends itself to an extension to the 2.9.5.7.11.13.17.19.23.

Using the full 7-limit patent val nonetheless, the equal temperament tempers out 2401/2400 in the 7-limit, and in the 11-limit extension, 3388/3375, 6250/6237, 15488/15435, 16384/16335, and 43923/43904.

Odd harmonics

Approximation of odd harmonics in 307edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +1.63 +0.66 +0.56 -0.65 -0.18 -0.14 -1.62 +0.58 -0.44 -1.73 +1.04
Relative (%) +41.7 +16.8 +14.2 -16.7 -4.6 -3.5 -41.5 +14.9 -11.4 -44.1 +26.6
Steps
(reduced)
487
(180)
713
(99)
862
(248)
973
(52)
1062
(141)
1136
(215)
1199
(278)
1255
(27)
1304
(76)
1348
(120)
1389
(161)

Subsets and supersets

307edo is the 63rd prime edo. 614edo, which doubles it, gives a good correction to the harmonic 3.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.9 [-973 307 [307 973]] +0.1029 0.1030 2.64
2.9.5 32805/32768, [2 47 -65 [307 973 713]] −0.0257 0.2004 5.13
2.9.5.7 32805/32768, 118098/117649, 589824/588245 [307 973 713 862]] −0.0687 0.1889 4.87
2.9.5.7.11 5632/5625, 8019/8000, 32805/32768, 46656/46585 [307 973 713 862 1062]] −0.0447 0.1756 4.49
2.9.5.7.11.13 729/728, 1001/1000, 4096/4095, 6656/6655, 10648/10647 [307 973 713 862 1062 1136]] −0.0311 0.1632 4.18
2.9.5.7.11.13.17 729/728, 936/935, 1001/1000, 1377/1375, 2025/2023, 7744/7735 [307 973 713 862 1062 1136 1255]] −0.0470 0.1560 3.99

Music

Francium