465edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
ArrowHead294 (talk | contribs)
mNo edit summary
ArrowHead294 (talk | contribs)
mNo edit summary
Line 12: Line 12:


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{{comma basis begin}}
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br />8ve Stretch (¢)
! colspan="2" | Tuning Error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
|-
| 2.3
| 2.3
Line 36: Line 27:
| 0.1619
| 0.1619
| 6.27
| 6.27
|}
{{comma basis end}}


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{{rank-2 begin}}
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
! Periods<br />per 8ve
! Generator*
! Cents*
! Associated<br />Ratio*
! Temperaments
|-
|-
| 1
| 1
Line 59: Line 43:
| 80/49<br />(15/14)
| 80/49<br />(15/14)
| [[Qintosec]] (465)
| [[Qintosec]] (465)
|}
{{rank-2 end}}
{{orf}}
{{orf}}

Revision as of 01:44, 16 November 2024

← 464edo 465edo 466edo →
Prime factorization 3 × 5 × 31
Step size 2.58065 ¢ 
Fifth 272\465 (701.935 ¢)
Semitones (A1:m2) 44:35 (113.5 ¢ : 90.32 ¢)
Consistency limit 5
Distinct consistency limit 5

Template:EDO intro

Theory

465edo is only consistent to the 5-odd-limit, and the errors of harmonics beyond 3 tend to be quite large. It can be considered for the 2.3.5.11.13.17 subgroup, tempering out 936/935, 1377/1375, 71874/71825, 131648/131625 and 225000/224939. It supports counterschismic in the 5-limit, and birds and belobog in the 7-limit using the patent val.

Prime harmonics

Approximation of prime harmonics in 465edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.02 +0.78 -1.08 +0.94 +0.76 +0.85 -0.74 -1.18 +0.10 +0.77
Relative (%) +0.0 -0.8 +30.3 -42.0 +36.4 +29.6 +33.0 -28.6 -45.6 +3.9 +29.9
Steps
(reduced)
465
(0)
737
(272)
1080
(150)
1305
(375)
1609
(214)
1721
(326)
1901
(41)
1975
(115)
2103
(243)
2259
(399)
2304
(444)

Subsets and supersets

Since 465 factors into 3 × 5 × 31, 465edo has subset edos 3, 5, 15, 31, 93, and 155. 930edo, which doubles it, gives a good correction to the harmonic 7.

Regular temperament properties

Template:Comma basis begin |- | 2.3 | [-737 465 | [465 737]] | +0.0062 | 0.0062 | 0.24 |- | 2.3.5 | [25 15 -21, [-22 30 -11 | [465 737 1080]] | -0.1083 | 0.1619 | 6.27 Template:Comma basis end

Rank-2 temperaments

Template:Rank-2 begin |- | 1 | 193\465 | 498.06 | 4/3 | Counterschismic |- | 5 | 322\465
(43\465) | 830.97
(110.97) | 80/49
(15/14) | Qintosec (465) Template:Rank-2 end Template:Orf