161edt: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Francium (talk | contribs)
m Marked page as stub
BudjarnLambeth (talk | contribs)
m Intro inter harm
Line 1: Line 1:
{{Stub}}
{{Stub}}
{{Infobox ET}}
{{Infobox ET}}
{{ED intro}}
== Intervals ==
{{Interval table}}
== Harmonics ==
{{Harmonics in equal
| steps = 161
| num = 3
| denom = 1
}}
{{Harmonics in equal
| steps = 161
| num = 3
| denom = 1
| start = 12
| collapsed = 1
}}

Revision as of 09:08, 5 October 2024

This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 160edt 161edt 162edt →
Prime factorization 7 × 23
Step size 11.8134 ¢ 
Octave 102\161edt (1204.97 ¢)
Consistency limit 3
Distinct consistency limit 3

161 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 161edt or 161ed3), is a nonoctave tuning system that divides the interval of 3/1 into 161 equal parts of about 11.8 ¢ each. Each step represents a frequency ratio of 31/161, or the 161st root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 11.8 8.1
2 23.6 16.1
3 35.4 24.2
4 47.3 32.3
5 59.1 40.4
6 70.9 48.4 49/47
7 82.7 56.5 43/41
8 94.5 64.6 19/18
9 106.3 72.7
10 118.1 80.7 15/14
11 129.9 88.8 55/51
12 141.8 96.9 51/47
13 153.6 105 47/43
14 165.4 113
15 177.2 121.1 41/37
16 189 129.2
17 200.8 137.3 55/49
18 212.6 145.3 26/23
19 224.5 153.4 33/29
20 236.3 161.5 39/34, 47/41
21 248.1 169.6 15/13
22 259.9 177.6 43/37
23 271.7 185.7 55/47
24 283.5 193.8
25 295.3 201.9 51/43
26 307.1 209.9 37/31
27 319 218
28 330.8 226.1 23/19
29 342.6 234.2
30 354.4 242.2 27/22
31 366.2 250.3 21/17
32 378 258.4 51/41
33 389.8 266.5
34 401.7 274.5
35 413.5 282.6 47/37
36 425.3 290.7 23/18, 55/43
37 437.1 298.8
38 448.9 306.8 35/27, 57/44
39 460.7 314.9 30/23
40 472.5 323
41 484.3 331.1 41/31, 45/34
42 496.2 339.1
43 508 347.2 55/41
44 519.8 355.3
45 531.6 363.4 34/25
46 543.4 371.4 26/19
47 555.2 379.5 51/37
48 567 387.6 43/31
49 578.9 395.7
50 590.7 403.7
51 602.5 411.8
52 614.3 419.9
53 626.1 428
54 637.9 436 13/9
55 649.7 444.1
56 661.5 452.2
57 673.4 460.2 31/21
58 685.2 468.3 49/33, 55/37
59 697 476.4
60 708.8 484.5
61 720.6 492.5 47/31
62 732.4 500.6
63 744.2 508.7
64 756.1 516.8
65 767.9 524.8
66 779.7 532.9
67 791.5 541 30/19, 49/31
68 803.3 549.1 35/22
69 815.1 557.1
70 826.9 565.2
71 838.8 573.3
72 850.6 581.4
73 862.4 589.4 51/31
74 874.2 597.5 58/35
75 886 605.6
76 897.8 613.7 42/25
77 909.6 621.7 22/13
78 921.4 629.8
79 933.3 637.9
80 945.1 646
81 956.9 654
82 968.7 662.1
83 980.5 670.2 37/21
84 992.3 678.3 39/22, 55/31
85 1004.1 686.3 25/14
86 1016 694.4
87 1027.8 702.5
88 1039.6 710.6 31/17
89 1051.4 718.6
90 1063.2 726.7
91 1075 734.8
92 1086.8 742.9
93 1098.6 750.9
94 1110.5 759 19/10
95 1122.3 767.1 44/23
96 1134.1 775.2
97 1145.9 783.2
98 1157.7 791.3 41/21
99 1169.5 799.4
100 1181.3 807.5
101 1193.2 815.5
102 1205 823.6
103 1216.8 831.7
104 1228.6 839.8
105 1240.4 847.8 43/21
106 1252.2 855.9
107 1264 864 27/13
108 1275.8 872
109 1287.7 880.1
110 1299.5 888.2
111 1311.3 896.3
112 1323.1 904.3 58/27
113 1334.9 912.4
114 1346.7 920.5 37/17
115 1358.5 928.6 57/26
116 1370.4 936.6
117 1382.2 944.7
118 1394 952.8 47/21
119 1405.8 960.9
120 1417.6 968.9 34/15
121 1429.4 977
122 1441.2 985.1 23/10
123 1453 993.2 44/19
124 1464.9 1001.2
125 1476.7 1009.3 54/23
126 1488.5 1017.4
127 1500.3 1025.5
128 1512.1 1033.5
129 1523.9 1041.6 41/17
130 1535.7 1049.7 17/7
131 1547.6 1057.8 22/9
132 1559.4 1065.8
133 1571.2 1073.9 57/23
134 1583 1082
135 1594.8 1090.1
136 1606.6 1098.1 43/17
137 1618.4 1106.2
138 1630.2 1114.3
139 1642.1 1122.4
140 1653.9 1130.4 13/5
141 1665.7 1138.5 34/13, 55/21
142 1677.5 1146.6 29/11
143 1689.3 1154.7
144 1701.1 1162.7
145 1712.9 1170.8
146 1724.8 1178.9
147 1736.6 1187
148 1748.4 1195
149 1760.2 1203.1 47/17, 58/21
150 1772 1211.2
151 1783.8 1219.3 14/5
152 1795.6 1227.3
153 1807.4 1235.4 54/19
154 1819.3 1243.5
155 1831.1 1251.6
156 1842.9 1259.6
157 1854.7 1267.7
158 1866.5 1275.8
159 1878.3 1283.9
160 1890.1 1291.9
161 1902 1300 3/1

Harmonics

Approximation of harmonics in 161edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +4.97 +0.00 -1.88 +1.65 +4.97 -2.01 +3.08 +0.00 -5.20 -4.82 -1.88
Relative (%) +42.0 +0.0 -15.9 +13.9 +42.0 -17.0 +26.1 +0.0 -44.0 -40.8 -15.9
Steps
(reduced)
102
(102)
161
(0)
203
(42)
236
(75)
263
(102)
285
(124)
305
(144)
322
(0)
337
(15)
351
(29)
364
(42)
Approximation of harmonics in 161edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +1.31 +2.95 +1.65 -3.77 -2.40 +4.97 +5.87 -0.24 -2.01 +0.15 +5.88
Relative (%) +11.0 +25.0 +13.9 -31.9 -20.3 +42.0 +49.7 -2.0 -17.0 +1.2 +49.8
Steps
(reduced)
376
(54)
387
(65)
397
(75)
406
(84)
415
(93)
424
(102)
432
(110)
439
(117)
446
(124)
453
(131)
460
(138)