156edt: Difference between revisions
Jump to navigation
Jump to search
m Marked page as stub |
m Intro inter harm |
||
Line 1: | Line 1: | ||
{{Stub}} | {{Stub}} | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ED intro}} | |||
== Intervals == | |||
{{Interval table}} | |||
== Harmonics == | |||
{{Harmonics in equal | |||
| steps = 156 | |||
| num = 3 | |||
| denom = 1 | |||
}} | |||
{{Harmonics in equal | |||
| steps = 156 | |||
| num = 3 | |||
| denom = 1 | |||
| start = 12 | |||
| collapsed = 1 | |||
}} |
Revision as of 09:05, 5 October 2024
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 155edt | 156edt | 157edt → |
156 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 156edt or 156ed3), is a nonoctave tuning system that divides the interval of 3/1 into 156 equal parts of about 12.2 ¢ each. Each step represents a frequency ratio of 31/156, or the 156th root of 3.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 12.2 | 8.3 | |
2 | 24.4 | 16.7 | |
3 | 36.6 | 25 | |
4 | 48.8 | 33.3 | |
5 | 61 | 41.7 | 57/55 |
6 | 73.2 | 50 | |
7 | 85.3 | 58.3 | 21/20, 41/39 |
8 | 97.5 | 66.7 | 18/17, 37/35 |
9 | 109.7 | 75 | 49/46 |
10 | 121.9 | 83.3 | |
11 | 134.1 | 91.7 | |
12 | 146.3 | 100 | |
13 | 158.5 | 108.3 | 23/21 |
14 | 170.7 | 116.7 | |
15 | 182.9 | 125 | 10/9 |
16 | 195.1 | 133.3 | |
17 | 207.3 | 141.7 | |
18 | 219.5 | 150 | |
19 | 231.6 | 158.3 | |
20 | 243.8 | 166.7 | 38/33 |
21 | 256 | 175 | |
22 | 268.2 | 183.3 | 7/6 |
23 | 280.4 | 191.7 | 20/17 |
24 | 292.6 | 200 | 58/49 |
25 | 304.8 | 208.3 | |
26 | 317 | 216.7 | |
27 | 329.2 | 225 | |
28 | 341.4 | 233.3 | |
29 | 353.6 | 241.7 | |
30 | 365.8 | 250 | 21/17 |
31 | 378 | 258.3 | 51/41 |
32 | 390.1 | 266.7 | |
33 | 402.3 | 275 | 29/23 |
34 | 414.5 | 283.3 | 47/37 |
35 | 426.7 | 291.7 | 55/43 |
36 | 438.9 | 300 | 49/38 |
37 | 451.1 | 308.3 | |
38 | 463.3 | 316.7 | 17/13 |
39 | 475.5 | 325 | 54/41 |
40 | 487.7 | 333.3 | 57/43 |
41 | 499.9 | 341.7 | |
42 | 512.1 | 350 | 39/29 |
43 | 524.3 | 358.3 | 23/17 |
44 | 536.4 | 366.7 | |
45 | 548.6 | 375 | |
46 | 560.8 | 383.3 | |
47 | 573 | 391.7 | |
48 | 585.2 | 400 | |
49 | 597.4 | 408.3 | |
50 | 609.6 | 416.7 | 27/19 |
51 | 621.8 | 425 | 43/30 |
52 | 634 | 433.3 | 49/34 |
53 | 646.2 | 441.7 | 45/31 |
54 | 658.4 | 450 | 19/13 |
55 | 670.6 | 458.3 | |
56 | 682.8 | 466.7 | 43/29 |
57 | 694.9 | 475 | |
58 | 707.1 | 483.3 | |
59 | 719.3 | 491.7 | 47/31 |
60 | 731.5 | 500 | 29/19 |
61 | 743.7 | 508.3 | |
62 | 755.9 | 516.7 | |
63 | 768.1 | 525 | |
64 | 780.3 | 533.3 | |
65 | 792.5 | 541.7 | |
66 | 804.7 | 550 | 43/27 |
67 | 816.9 | 558.3 | |
68 | 829.1 | 566.7 | 21/13, 50/31 |
69 | 841.2 | 575 | |
70 | 853.4 | 583.3 | 18/11 |
71 | 865.6 | 591.7 | 33/20 |
72 | 877.8 | 600 | |
73 | 890 | 608.3 | |
74 | 902.2 | 616.7 | |
75 | 914.4 | 625 | 39/23 |
76 | 926.6 | 633.3 | |
77 | 938.8 | 641.7 | |
78 | 951 | 650 | |
79 | 963.2 | 658.3 | |
80 | 975.4 | 666.7 | 58/33 |
81 | 987.6 | 675 | 23/13 |
82 | 999.7 | 683.3 | 41/23 |
83 | 1011.9 | 691.7 | |
84 | 1024.1 | 700 | |
85 | 1036.3 | 708.3 | 20/11 |
86 | 1048.5 | 716.7 | 11/6 |
87 | 1060.7 | 725 | |
88 | 1072.9 | 733.3 | 13/7 |
89 | 1085.1 | 741.7 | |
90 | 1097.3 | 750 | 49/26 |
91 | 1109.5 | 758.3 | 55/29 |
92 | 1121.7 | 766.7 | |
93 | 1133.9 | 775 | |
94 | 1146 | 783.3 | |
95 | 1158.2 | 791.7 | 41/21 |
96 | 1170.4 | 800 | 57/29 |
97 | 1182.6 | 808.3 | |
98 | 1194.8 | 816.7 | |
99 | 1207 | 825 | |
100 | 1219.2 | 833.3 | |
101 | 1231.4 | 841.7 | 55/27 |
102 | 1243.6 | 850 | 39/19, 41/20 |
103 | 1255.8 | 858.3 | 31/15 |
104 | 1268 | 866.7 | |
105 | 1280.2 | 875 | |
106 | 1292.4 | 883.3 | 19/9 |
107 | 1304.5 | 891.7 | |
108 | 1316.7 | 900 | |
109 | 1328.9 | 908.3 | |
110 | 1341.1 | 916.7 | |
111 | 1353.3 | 925 | |
112 | 1365.5 | 933.3 | |
113 | 1377.7 | 941.7 | 51/23 |
114 | 1389.9 | 950 | 29/13 |
115 | 1402.1 | 958.3 | |
116 | 1414.3 | 966.7 | 43/19 |
117 | 1426.5 | 975 | 41/18 |
118 | 1438.7 | 983.3 | 39/17 |
119 | 1450.9 | 991.7 | |
120 | 1463 | 1000 | |
121 | 1475.2 | 1008.3 | |
122 | 1487.4 | 1016.7 | |
123 | 1499.6 | 1025 | |
124 | 1511.8 | 1033.3 | |
125 | 1524 | 1041.7 | 41/17 |
126 | 1536.2 | 1050 | 17/7 |
127 | 1548.4 | 1058.3 | |
128 | 1560.6 | 1066.7 | |
129 | 1572.8 | 1075 | |
130 | 1585 | 1083.3 | |
131 | 1597.2 | 1091.7 | |
132 | 1609.3 | 1100 | |
133 | 1621.5 | 1108.3 | 51/20 |
134 | 1633.7 | 1116.7 | 18/7 |
135 | 1645.9 | 1125 | |
136 | 1658.1 | 1133.3 | |
137 | 1670.3 | 1141.7 | |
138 | 1682.5 | 1150 | |
139 | 1694.7 | 1158.3 | |
140 | 1706.9 | 1166.7 | |
141 | 1719.1 | 1175 | 27/10 |
142 | 1731.3 | 1183.3 | |
143 | 1743.5 | 1191.7 | |
144 | 1755.7 | 1200 | |
145 | 1767.8 | 1208.3 | |
146 | 1780 | 1216.7 | |
147 | 1792.2 | 1225 | |
148 | 1804.4 | 1233.3 | 17/6 |
149 | 1816.6 | 1241.7 | 20/7 |
150 | 1828.8 | 1250 | |
151 | 1841 | 1258.3 | 55/19 |
152 | 1853.2 | 1266.7 | |
153 | 1865.4 | 1275 | |
154 | 1877.6 | 1283.3 | |
155 | 1889.8 | 1291.7 | |
156 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -5.18 | +0.00 | +1.83 | +5.66 | -5.18 | -3.83 | -3.35 | +0.00 | +0.48 | -6.03 | +1.83 |
Relative (%) | -42.5 | +0.0 | +15.0 | +46.4 | -42.5 | -31.4 | -27.5 | +0.0 | +3.9 | -49.5 | +15.0 | |
Steps (reduced) |
98 (98) |
156 (0) |
197 (41) |
229 (73) |
254 (98) |
276 (120) |
295 (139) |
312 (0) |
327 (15) |
340 (28) |
353 (41) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | +3.18 | +5.66 | +3.66 | -3.76 | -5.18 | -1.25 | -4.71 | -3.83 | +0.98 | -2.83 |
Relative (%) | -21.6 | +26.1 | +46.4 | +30.0 | -30.9 | -42.5 | -10.2 | -38.6 | -31.4 | +8.0 | -23.2 | |
Steps (reduced) |
364 (52) |
375 (63) |
385 (73) |
394 (82) |
402 (90) |
410 (98) |
418 (106) |
425 (113) |
432 (120) |
439 (127) |
445 (133) |