Equave limit: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Contribution (talk | contribs)
No edit summary
Fredg999 (talk | contribs)
Move "purpose" section to lead section, mark term as idiosyncratic, categories
Line 1: Line 1:
==Purpose==
The '''equave limit'''{{idiosyncratic}} generalizes the concept of [[odd limit]], extending for any [[equave]] what the odd-limit represents specifically for the equave 2/1.
The '''equave limit''' generalizes the concept of [[odd limit]], extending for any [[equave]] what the odd-limit represents specifically for the equave 2/1.


==Definition==
==Definition==
Line 18: Line 17:
\frac{u}{v}
\frac{u}{v}
</math>​​ by restricting them to a specific [[just intonation subgroup]].
</math>​​ by restricting them to a specific [[just intonation subgroup]].
[[Category:Limit]]

Revision as of 00:10, 8 September 2024

The equave limit[idiosyncratic term] generalizes the concept of odd limit, extending for any equave what the odd-limit represents specifically for the equave 2/1.

Definition

The q-equave-n-limit is defined as the set of all positive rationals [math]\displaystyle{ \displaystyle {q^z}\cdot\frac{u}{v} }[/math], where:

  • [math]\displaystyle{ q∈Q+ }[/math]​ (i.e., [math]\displaystyle{ q }[/math] is a positive rational number), called the equave,
  • [math]\displaystyle{ z∈Z }[/math]​ (i.e., [math]\displaystyle{ z }[/math] is an integer, positive or negative),
  • [math]\displaystyle{ u,v∈Z+ }[/math]​​ (i.e., [math]\displaystyle{ u }[/math] and [math]\displaystyle{ v }[/math] are positive integers) such that [math]\displaystyle{ u≤n }[/math] and [math]\displaystyle{ v≤n }[/math],
  • [math]\displaystyle{ n∈Z+ }[/math]​​ (i.e., [math]\displaystyle{ n }[/math] is a positive integer), called the limit.

The parameter [math]\displaystyle{ n }[/math] places an upper bound on the values of the integers [math]\displaystyle{ u }[/math] and [math]\displaystyle{ v }[/math], meaning that both [math]\displaystyle{ u }[/math] and [math]\displaystyle{ v }[/math] are less than or equal to [math]\displaystyle{ n }[/math]. Thus, the q-equave-n-limit consists of ratios generated by multiplying a power of [math]\displaystyle{ q }[/math] by ratios [math]\displaystyle{ \displaystyle \frac{u}{v} }[/math]​, where the numerator and denominator are constrained by the limit [math]\displaystyle{ n }[/math].

Additional constraints can be applied to the ratios [math]\displaystyle{ \displaystyle \frac{u}{v} }[/math]​​ by restricting them to a specific just intonation subgroup.