22edo chords: Difference between revisions
Typo |
added ups and downs names, reorganized, minor rewrite |
||
Line 1: | Line 1: | ||
22 | 22-edo contains a huge wealth of harmonies to explore. It has not only 5-limit major and minor but also various 7-limit and 11-limit chords. | ||
=Triads= | =Triads= | ||
22 | 22-edo contains many [[triad]]s. This list is by no means an exhaustive one, but it highlights some common and interesting ones. | ||
{| class="wikitable" | {| class="wikitable" | ||
! | |||
! colspan="2" |[[Ups and downs notation|ups and downs]] name | |||
! colspan="2" | | |||
! | |||
|- | |- | ||
| | | | |0-381-709 | ||
| | | 0-7-13 | ||
| | | |Downmajor, Down | ||
v | |||
| | [[File:major_triad.mp3]] | |vM3, P5 | ||
| |Major | |||
M, Maj | |||
|M3, P5 | |||
| |[[File:major_triad.mp3]] | |||
|- | |- | ||
| |0-327-709 | |||
0-6-13 | |||
|Upminor | |||
^m | |||
|^m3, P5 | |||
| | Minor | | | Minor | ||
m, min, - | |||
|m3, P5 | |||
| | | |[[File:minor_triad.mp3]] | ||
| | [[File:minor_triad.mp3]] | |||
|- | |- | ||
| | 0-436-709 | | | 0-436-709 | ||
| | S, Sup, ^ | 0-8-13 | ||
| | [[File:super_triad.mp3]] | |Major | ||
(nothing needed) | |||
|M3, P5 | |||
| |SuperMajor | |||
S, Sup, ^ | |||
|S3, P5 | |||
| | | |||
[[File:super_triad.mp3]] | |||
|- | |- | ||
| | 0-272-709 | | | 0-272-709 | ||
| | s, Sub, v | 0-5-13 | ||
| | [[File:sub_triad.mp3]] | |Minor | ||
m | |||
|m3, P5 | |||
| |SubMinor | |||
s, Sub, v | |||
|s3, P5 | |||
| |[[File:sub_triad.mp3]] | |||
|- | |- | ||
| | 0-327-654 | | | 0-327-654 | ||
| | mag, * | 0-6-12 | ||
| | [[File:magic_triad.mp3]] | |Upminor down5 | ||
^m(v5) | |||
|^m3, v5 | |||
| |Magical | |||
mag, * | |||
|m3, m5 | |||
| |[[File:magic_triad.mp3]] | |||
|- | |- | ||
| |0-272-545 | |||
0-5-10 | |||
|Diminished | |||
d, dim | |||
|m3, d5 | |||
| | Tiny | | | Tiny | ||
t | |||
|s3, t5 | |||
| |[[File:tiny_triad.mp3]] | |||
| | [[File:tiny_triad.mp3]] | |||
|- | |- | ||
| | 0-436-872 | | | 0-436-872 | ||
| | G | 0-8-16 | ||
| | [[File:giant_chord.mp3]] | |Augmented | ||
a, aug | |||
|M3, aug5 | |||
| |Giant | |||
G | |||
|S3, G5 | |||
| |[[File:giant_chord.mp3]] | |||
|} | |} | ||
=Seventh Chords= | =Seventh Chords= | ||
While triads show promise, the real fun is [[ | While triads show promise, the real fun in 22-edo is [[tetrad]]s. There is a wealth of interesting tertian based tetrads. | ||
{| class="wikitable" | {| class="wikitable" | ||
! | |||
! colspan="2" |[[Ups and downs notation|ups and downs]] name | |||
! colspan="2" | | |||
! | |||
|- | |- | ||
| | | | |0-381-709-1090 | ||
| | | 0-7-13-20 | ||
| | | |Downmajor7 | ||
| | | vM7 | ||
| | | |vM3, P5, vM7 | ||
| | Major 7th | |||
Maj7, M7 | |||
| |M3, P5, M7 | |||
| | | |||
|- | |- | ||
| | | | |0-327-709-1036 | ||
| | m3, P5, m7 | 0-6-13-19 | ||
| | | |Upminor7 | ||
^m7 | |||
| | [[File:min7.mp3]] | |^m3, P5, ^m7 | ||
| |Minor 7th | |||
min7, m7, -7 | |||
| |m3, P5, m7 | |||
| |[[File:min7.mp3]] | |||
|- | |- | ||
| | | | |0-436-709-1145 | ||
| | | 0-8-13-21 | ||
| | | |Major7 | ||
M7 | |||
| | [[File:sup7.mp3]] | |M3, P5, M7 | ||
| | Super 7th | |||
Sup7, S7,^7 | |||
| |S3, P5, S7 | |||
| |[[File:sup7.mp3]] | |||
|- | |- | ||
| | | | |0-272-709-981 | ||
| | | 0-5-13-18 | ||
| | | |Minor7 | ||
| | | m7 | ||
| | [[File:sub7.mp3]] | |m3, P5, m7 | ||
| |Sub 7th | |||
Sub7, s7 | |||
| |s3, P5, s7 | |||
| |[[File:sub7.mp3]] | |||
|- | |- | ||
| | | | | 0-381-709-981 | ||
| | | 0-7-13-18 | ||
| | | |Down add7 | ||
| | | v,7 | ||
| | | |vM3, P5, m7 | ||
| |Harmonic 7th | |||
Harm7, H7 | |||
| |M3, P5, s7 | |||
| |[[File:har7_chord.mp3]] | |||
|- | |- | ||
| | | | | 0-327-654-981 | ||
| | | 0-6-12-18 | ||
| | | | Upminor add7 down5 | ||
| | | ^m,7(v5) | ||
| | | | ^m3, v5, m7 | ||
| |Magical 7th | |||
Mag7, *7 | |||
| |m3, m5, s7 | |||
| | | |||
|- | |- | ||
| | | | |0-381-709-1145 | ||
| | | 0-7-13-21 | ||
| | | | Major7 down3 | ||
| | | M7(v3) | ||
| | | |vM3, P5, M7 | ||
| |Major Super 7th | |||
MS7, M^7 | |||
| |M7, P5, S7 | |||
| | | |||
|- | |- | ||
| | | | |0-327-709-981 | ||
| | | 0-6-13-18 | ||
| | | |Upminor add7 | ||
| | | ^m,7 | ||
| | | |^m3, P5, m7 | ||
| |Minor Sub 7th | |||
ms7 | |||
| |m7, P5, s7 | |||
| | | |||
|- | |- | ||
| | | | |0-436-709-1036 | ||
| | | 0-8-13-19 | ||
| | | |Add upminor7 | ||
| | | ,^m7 | ||
| | | |M3, P5, ^m7 | ||
| |Super Minor 7th | |||
Sm7 | |||
| |S3, P5, m7 | |||
| | | |||
|- | |- | ||
| | | | | 0-272-709-1090 | ||
| | | 0-5-13-20 | ||
| | | |Minor downmajor7 | ||
| | | m,vM7 | ||
| | | |m3, P5, vM7 | ||
| |Sub Major 7th | |||
sM7 | |||
| |s3, P5, M7 | |||
| | | |||
|- | |- | ||
| | | | |0-436-709-981 | ||
| | M3, P5, | 0-8-13-18 | ||
| | | |Dom7 | ||
| | | 7 | ||
| | | |M3, P5, m7 | ||
| |Super Sub 7th | |||
Ss7, Supsub7 | |||
| |S3, P5, s7 | |||
| | | |||
|- | |- | ||
| | | | |0-272-545-818 | ||
| | | 0-5-10-15 | ||
| | | |Diminished7 | ||
| | t7 | d7 | ||
| | | |m3, d5, d7 | ||
| |Tiny 7th | |||
t7 | |||
| |s3, t5, t7 | |||
| | | |||
|- | |- | ||
| | | | |0-436-872-1145 | ||
| | | 0-8-16-21 | ||
| | | |Major7 sharp5 | ||
| | G6 | M7(#5) | ||
| | | |M3, #5, M7 | ||
| |Giant 6th | |||
G6 | |||
| |S3, G5, G6 | |||
| | | |||
|- | |- | ||
| | | | |0-327-709-927 | ||
| | m3, P5, | 0-6-13-17 | ||
| | | |Upminor 6 | ||
| | | ^m6 | ||
| | | |^m3, P5, vM6 | ||
| |Harmonic Minor 6th | |||
Hm6 | |||
| |m3, P5, S6 | |||
| | | |||
|} | |} | ||
=see also= | =see also= | ||
<ul><li>[[22edo|22edo]]</li><li>[[22edo_tetrachords|22edo Tetrachords]]</li><li>[[Chords of orwell|Chords of Orwell]] | <ul><li>[[22edo|22edo]]</li><li>[[22edo_tetrachords|22edo Tetrachords]]</li><li>[[Chords of orwell|Chords of Orwell]] | ||
</li></ul> | </li><li>[[22edo_Chord_Names|22edo Chord Names]]</li></ul> | ||
[[Category:22edo]] | [[Category:22edo]] | ||
[[Category:chords]] | [[Category:chords]] |
Revision as of 21:48, 27 April 2023
22-edo contains a huge wealth of harmonies to explore. It has not only 5-limit major and minor but also various 7-limit and 11-limit chords.
Triads
22-edo contains many triads. This list is by no means an exhaustive one, but it highlights some common and interesting ones.
ups and downs name | |||||
---|---|---|---|---|---|
0-381-709
0-7-13 |
Downmajor, Down
v |
vM3, P5 | Major
M, Maj |
M3, P5 | |
0-327-709
0-6-13 |
Upminor
^m |
^m3, P5 | Minor
m, min, - |
m3, P5 | |
0-436-709
0-8-13 |
Major
(nothing needed) |
M3, P5 | SuperMajor
S, Sup, ^ |
S3, P5 |
|
0-272-709
0-5-13 |
Minor
m |
m3, P5 | SubMinor
s, Sub, v |
s3, P5 | |
0-327-654
0-6-12 |
Upminor down5
^m(v5) |
^m3, v5 | Magical
mag, * |
m3, m5 | |
0-272-545
0-5-10 |
Diminished
d, dim |
m3, d5 | Tiny
t |
s3, t5 | |
0-436-872
0-8-16 |
Augmented
a, aug |
M3, aug5 | Giant
G |
S3, G5 |
Seventh Chords
While triads show promise, the real fun in 22-edo is tetrads. There is a wealth of interesting tertian based tetrads.
ups and downs name | |||||
---|---|---|---|---|---|
0-381-709-1090
0-7-13-20 |
Downmajor7
vM7 |
vM3, P5, vM7 | Major 7th
Maj7, M7 |
M3, P5, M7 | |
0-327-709-1036
0-6-13-19 |
Upminor7
^m7 |
^m3, P5, ^m7 | Minor 7th
min7, m7, -7 |
m3, P5, m7 | |
0-436-709-1145
0-8-13-21 |
Major7
M7 |
M3, P5, M7 | Super 7th
Sup7, S7,^7 |
S3, P5, S7 | |
0-272-709-981
0-5-13-18 |
Minor7
m7 |
m3, P5, m7 | Sub 7th
Sub7, s7 |
s3, P5, s7 | |
0-381-709-981
0-7-13-18 |
Down add7
v,7 |
vM3, P5, m7 | Harmonic 7th
Harm7, H7 |
M3, P5, s7 | |
0-327-654-981
0-6-12-18 |
Upminor add7 down5
^m,7(v5) |
^m3, v5, m7 | Magical 7th
Mag7, *7 |
m3, m5, s7 | |
0-381-709-1145
0-7-13-21 |
Major7 down3
M7(v3) |
vM3, P5, M7 | Major Super 7th
MS7, M^7 |
M7, P5, S7 | |
0-327-709-981
0-6-13-18 |
Upminor add7
^m,7 |
^m3, P5, m7 | Minor Sub 7th
ms7 |
m7, P5, s7 | |
0-436-709-1036
0-8-13-19 |
Add upminor7
,^m7 |
M3, P5, ^m7 | Super Minor 7th
Sm7 |
S3, P5, m7 | |
0-272-709-1090
0-5-13-20 |
Minor downmajor7
m,vM7 |
m3, P5, vM7 | Sub Major 7th
sM7 |
s3, P5, M7 | |
0-436-709-981
0-8-13-18 |
Dom7
7 |
M3, P5, m7 | Super Sub 7th
Ss7, Supsub7 |
S3, P5, s7 | |
0-272-545-818
0-5-10-15 |
Diminished7
d7 |
m3, d5, d7 | Tiny 7th
t7 |
s3, t5, t7 | |
0-436-872-1145
0-8-16-21 |
Major7 sharp5
M7(#5) |
M3, #5, M7 | Giant 6th
G6 |
S3, G5, G6 | |
0-327-709-927
0-6-13-17 |
Upminor 6
^m6 |
^m3, P5, vM6 | Harmonic Minor 6th
Hm6 |
m3, P5, S6 |