22edo chords: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Hstraub (talk | contribs)
Typo
TallKite (talk | contribs)
added ups and downs names, reorganized, minor rewrite
Line 1: Line 1:
22 EDO contains a huge wealth of harmonic sonorities for a curious musician to explore. Besides normal major and minor, 22 EDO features a nice amount of 7-limit and 11-limit chords.
22-edo contains a huge wealth of harmonies to explore. It has not only 5-limit major and minor but also various 7-limit and 11-limit chords.


=Triads=
=Triads=
22 EDO contains many possibilities for [[triad|triad]]s, this list is by no means an exhaustive one, but it highlights some common and interesting one's.
22-edo contains many [[triad]]s. This list is by no means an exhaustive one, but it highlights some common and interesting ones.


{| class="wikitable"
{| class="wikitable"
!
! colspan="2" |[[Ups and downs notation|ups and downs]] name
! colspan="2" |
!
|-
|-
| | Major
| |0-381-709
| | M3, P5
0-7-13
| | 0-381-709
|Downmajor, Down
| | M, Maj
v
| | [[File:major_triad.mp3]]
|vM3, P5
| |Major
M, Maj
|M3, P5
| |[[File:major_triad.mp3]]
|-
|-
| |0-327-709
0-6-13
|Upminor
^m
|^m3, P5
| | Minor
| | Minor
| | m3, P5
m, min, -
| | 0-327-709
|m3, P5
| | m, min, -
| |[[File:minor_triad.mp3]]
| | [[File:minor_triad.mp3]]
|-
|-
| | SuperMajor
| | S3, P5
| | 0-436-709
| | 0-436-709
| | S, Sup, ^
0-8-13
| | [[File:super_triad.mp3]]
|Major
(nothing needed)
|M3, P5
| |SuperMajor
S, Sup, ^
|S3, P5
| |
[[File:super_triad.mp3]]
|-
|-
| | SubMinor
| | s3, P5
| | 0-272-709
| | 0-272-709
| | s, Sub, v
0-5-13
| | [[File:sub_triad.mp3]]
|Minor
m
|m3, P5
| |SubMinor
s, Sub, v
|s3, P5
| |[[File:sub_triad.mp3]]
|-
|-
| | Magical
| | m3, m5
| | 0-327-654
| | 0-327-654
| | mag, *
0-6-12
| | [[File:magic_triad.mp3]]
|Upminor down5
^m(v5)
|^m3, v5
| |Magical
mag, *
|m3, m5
| |[[File:magic_triad.mp3]]
|-
|-
| |0-272-545
0-5-10
|Diminished
d, dim
|m3, d5
| | Tiny
| | Tiny
| | s3, t5
t
| | 0-272-545
|s3, t5
| | t
| |[[File:tiny_triad.mp3]]
| | [[File:tiny_triad.mp3]]
|-
|-
| | Giant
| | S3, G5
| | 0-436-872
| | 0-436-872
| | G
0-8-16
| | [[File:giant_chord.mp3]]
|Augmented
a, aug
|M3, aug5
| |Giant
G
|S3, G5
| |[[File:giant_chord.mp3]]
|}
|}


=Seventh Chords=
=Seventh Chords=
While triads show promise, the real fun is [[tetrad|tetrad]]s in 22 EDO. There are a wealth of interesting sonorities by a variety of four note tertian based chords.
While triads show promise, the real fun in 22-edo is [[tetrad]]s. There is a wealth of interesting tertian based tetrads.


{| class="wikitable"
{| class="wikitable"
!
! colspan="2" |[[Ups and downs notation|ups and downs]] name
! colspan="2" |
!
|-
|-
| | Major Seventh
| |0-381-709-1090
| | M3, P5, M7
0-7-13-20
| | 000-381-709-1090
|Downmajor7
| | Maj7, M7
vM7
| |  
|vM3, P5, vM7
| | Major 7th
Maj7, M7
| |M3, P5, M7
| |
|-
|-
| | Minor Seventh
| |0-327-709-1036
| | m3, P5, m7
0-6-13-19
| | 000-327-709-1036
|Upminor7
| | min7, m7, -7
^m7
| | [[File:min7.mp3]]
|^m3, P5, ^m7
| |Minor 7th
min7, m7, -7
| |m3, P5, m7
| |[[File:min7.mp3]]
|-
|-
| | Super Seventh
| |0-436-709-1145
| | S3, P5, S7
0-8-13-21
| | 000-436-709-1145
|Major7
| | Sup7, S7,^7
M7
| | [[File:sup7.mp3]]
|M3, P5, M7
| | Super 7th
Sup7, S7,^7
| |S3, P5, S7
| |[[File:sup7.mp3]]
|-
|-
| | Sub Seventh
| |0-272-709-981
| | s3, P5, s7
0-5-13-18
| | 000-272-709-981
|Minor7
| | Sub7, s7
m7
| | [[File:sub7.mp3]]
|m3, P5, m7
| |Sub 7th
Sub7, s7
| |s3, P5, s7
| |[[File:sub7.mp3]]
|-
|-
| | Magical Seventh
| | 0-381-709-981
| | m3, m5, s7
0-7-13-18
| | 000-327-654-981
|Down add7
| | Mag7, *7
v,7
| |  
|vM3, P5, m7
| |Harmonic 7th
Harm7, H7
| |M3, P5, s7
| |[[File:har7_chord.mp3]]
|-
|-
| | Major Super seventh
| | 0-327-654-981
| | M7, P5, S7
0-6-12-18
| | 000-381-709-1145
| Upminor add7 down5
| | MS7, M^7
^m,7(v5)
| |  
| ^m3, v5, m7
| |Magical 7th
Mag7, *7
| |m3, m5, s7
| |
|-
|-
| | Minor Sub Seventh
| |0-381-709-1145
| | m7, P5, s7
0-7-13-21
| | 000-327-709-981
| Major7 down3
| | ms7
M7(v3)
| |  
|vM3, P5, M7
| |Major Super 7th
MS7, M^7
| |M7, P5, S7
| |
|-
|-
| | Super Minor Seventh
| |0-327-709-981
| | S3, P5, m7
0-6-13-18
| | 000-436-709-1036
|Upminor add7
| | Sm7
^m,7
| |  
|^m3, P5, m7
| |Minor Sub 7th
ms7
| |m7, P5, s7
| |
|-
|-
| | Sub Major Seventh
| |0-436-709-1036
| | s3, P5, M7
0-8-13-19
| | 000-272-709-1090
|Add upminor7
| | sM7
,^m7
| |  
|M3, P5, ^m7
| |Super Minor 7th
Sm7
| |S3, P5, m7
| |
|-
|-
| | Super Sub Seventh
| | 0-272-709-1090
| | S3, P5, s7
0-5-13-20
| | 000-436-709-981
|Minor downmajor7
| | Ss7, Supsub7
m,vM7
| |  
|m3, P5, vM7
| |Sub Major 7th
sM7
| |s3, P5, M7
| |
|-
|-
| | Harmonic Seventh
| |0-436-709-981
| | M3, P5, s7
0-8-13-18
| | 000-381-709-981
|Dom7
| | Harm7, H7
7
| | [[File:har7_chord.mp3]]
|M3, P5, m7
| |Super Sub 7th
Ss7, Supsub7
| |S3, P5, s7
| |
|-
|-
| | Tiny seventh
| |0-272-545-818
| | s3, t5, t7
0-5-10-15
| | 000-272-545-818
|Diminished7
| | t7
d7
| |  
|m3, d5, d7
| |Tiny 7th
t7
| |s3, t5, t7
| |
|-
|-
| | Giant Sixth
| |0-436-872-1145
| | S3, G5, G6
0-8-16-21
| | 000-436-872-1145
|Major7 sharp5
| | G6
M7(#5)
| |  
|M3, #5, M7
| |Giant 6th
G6
| |S3, G5, G6
| |
|-
|-
| | Harmonic Minor Sixth
| |0-327-709-927
| | m3, P5, S6
0-6-13-17
| | 000-327-709-927
|Upminor 6
| | Hm6
^m6
| |  
|^m3, P5, vM6
| |Harmonic Minor 6th
Hm6
| |m3, P5, S6
| |
|}
|}


=see also=
=see also=
<ul><li>[[22edo|22edo]]</li><li>[[22edo_tetrachords|22edo Tetrachords]]</li><li>[[Chords of orwell|Chords of Orwell]]
<ul><li>[[22edo|22edo]]</li><li>[[22edo_tetrachords|22edo Tetrachords]]</li><li>[[Chords of orwell|Chords of Orwell]]
</li></ul>       
</li><li>[[22edo_Chord_Names|22edo Chord Names]]</li></ul>       
[[Category:22edo]]
[[Category:22edo]]
[[Category:chords]]
[[Category:chords]]

Revision as of 21:48, 27 April 2023

22-edo contains a huge wealth of harmonies to explore. It has not only 5-limit major and minor but also various 7-limit and 11-limit chords.

Triads

22-edo contains many triads. This list is by no means an exhaustive one, but it highlights some common and interesting ones.

ups and downs name
0-381-709

0-7-13

Downmajor, Down

v

vM3, P5 Major

M, Maj

M3, P5
0-327-709

0-6-13

Upminor

^m

^m3, P5 Minor

m, min, -

m3, P5
0-436-709

0-8-13

Major

(nothing needed)

M3, P5 SuperMajor

S, Sup, ^

S3, P5

0-272-709

0-5-13

Minor

m

m3, P5 SubMinor

s, Sub, v

s3, P5
0-327-654

0-6-12

Upminor down5

^m(v5)

^m3, v5 Magical

mag, *

m3, m5
0-272-545

0-5-10

Diminished

d, dim

m3, d5 Tiny

t

s3, t5
0-436-872

0-8-16

Augmented

a, aug

M3, aug5 Giant

G

S3, G5

Seventh Chords

While triads show promise, the real fun in 22-edo is tetrads. There is a wealth of interesting tertian based tetrads.

ups and downs name
0-381-709-1090

0-7-13-20

Downmajor7

vM7

vM3, P5, vM7 Major 7th

Maj7, M7

M3, P5, M7
0-327-709-1036

0-6-13-19

Upminor7

^m7

^m3, P5, ^m7 Minor 7th

min7, m7, -7

m3, P5, m7
0-436-709-1145

0-8-13-21

Major7

M7

M3, P5, M7 Super 7th

Sup7, S7,^7

S3, P5, S7
0-272-709-981

0-5-13-18

Minor7

m7

m3, P5, m7 Sub 7th

Sub7, s7

s3, P5, s7
0-381-709-981

0-7-13-18

Down add7

v,7

vM3, P5, m7 Harmonic 7th

Harm7, H7

M3, P5, s7
0-327-654-981

0-6-12-18

Upminor add7 down5

^m,7(v5)

^m3, v5, m7 Magical 7th

Mag7, *7

m3, m5, s7
0-381-709-1145

0-7-13-21

Major7 down3

M7(v3)

vM3, P5, M7 Major Super 7th

MS7, M^7

M7, P5, S7
0-327-709-981

0-6-13-18

Upminor add7

^m,7

^m3, P5, m7 Minor Sub 7th

ms7

m7, P5, s7
0-436-709-1036

0-8-13-19

Add upminor7

,^m7

M3, P5, ^m7 Super Minor 7th

Sm7

S3, P5, m7
0-272-709-1090

0-5-13-20

Minor downmajor7

m,vM7

m3, P5, vM7 Sub Major 7th

sM7

s3, P5, M7
0-436-709-981

0-8-13-18

Dom7

7

M3, P5, m7 Super Sub 7th

Ss7, Supsub7

S3, P5, s7
0-272-545-818

0-5-10-15

Diminished7

d7

m3, d5, d7 Tiny 7th

t7

s3, t5, t7
0-436-872-1145

0-8-16-21

Major7 sharp5

M7(#5)

M3, #5, M7 Giant 6th

G6

S3, G5, G6
0-327-709-927

0-6-13-17

Upminor 6

^m6

^m3, P5, vM6 Harmonic Minor 6th

Hm6

m3, P5, S6

see also