User:Recentlymaterialized/1099826edo

From Xenharmonic Wiki
Jump to navigation Jump to search
This page presents a novelty topic. It may contain ideas which are less likely to find practical applications in xenharmonic music, or numbers that are impractically large, exceedingly complex, or chosen arbitrarily. Novelty topics are often developed by a single person or a small group. As such, this page may also contain idiosyncratic terms, notation, or conceptual frameworks.
← 1099825edo 1099826edo 1099827edo →
Prime factorization 2 × 7 × 13 × 6043
Step size 0.00109108¢ 
Fifth 643357\1099826 (701.955¢) (→49489\84602)
Semitones (A1:m2) 104195:82693 (113.7¢ : 90.22¢)
Consistency limit 55
Distinct consistency limit at least 43

1099826 equal divisions of the octave (abbreviated 1099826edo or 1099826ed2), also called 1099826-tone equal temperament (1099826tet) or 1099826 equal temperament (1099826et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 1099826 equal parts of about 0.00109 ¢ each. Each step represents a frequency ratio of 21/1099826, or the 1099826th root of 2.

Approximation of prime harmonics in 1099826edo
Harmonic 2 3 5 7 11 13 17 19
Error Absolute (¢) +0.0000000 +0.0000357 +0.0001212 +0.0000715 +0.0001752 +0.0002035 +0.0001016 -0.0001368
Relative (%) +0.0 +3.3 +11.1 +6.5 +16.1 +18.7 +9.3 -12.5
Steps
(reduced)
1099826
(0)
1743183
(643357)
2553717
(354065)
3087602
(887950)
3804773
(505295)
4069840
(770362)
4495498
(96194)
4671981
(272677)
Approximation of prime harmonics in 1099826edo (continued)
Harmonic 23 29 31 37 41 43 47 53
Error Absolute (¢) -0.0000566 +0.0002117 +0.0000968 -0.0002807 +0.0000098 -0.0000656 -0.0002601 +0.0001725
Relative (%) -5.2 +19.4 +8.9 -25.7 +0.9 -6.0 -23.8 +15.8
Steps
(reduced)
4975131
(575827)
5342934
(943630)
5448754
(1049450)
5729492
(230362)
5892375
(393245)
5967947
(468817)
6109081
(609951)
6299716
(800586)
Approximation of prime harmonics in 1099826edo (continued)
Harmonic 59 61 67 71 73 79 83 89
Error Absolute (¢) +0.0002461 -0.0001342 +0.0004255 +0.0002450 +0.0000160 +0.0000380 -0.0001283 +0.0000039
Relative (%) +22.6 -12.3 +39.0 +22.5 +1.5 +3.5 -11.8 +0.4
Steps
(reduced)
6469884
(970754)
6522779
(1023649)
6671643
(72687)
6763652
(164696)
6807730
(208774)
6933062
(334106)
7011434
(412478)
7122180
(523224)
Approximation of prime harmonics in 1099826edo (continued)
Harmonic 97 101 103 107 109 113 127 131
Error Absolute (¢) +0.0002820 -0.0001115 -0.0001405 +0.0003603 -0.0001017 -0.0001610 -0.0001356 -0.0005304
Relative (%) +25.8 -10.2 -12.9 +33.0 -9.3 -14.8 -12.4 -48.6
Steps
(reduced)
7258756
(659800)
7322874
(723918)
7353987
(755031)
7414441
(815485)
7443825
(844869)
7501010
(902054)
7686337
(1087381)
7735541
(36759)