User:Lériendil/76ed81/5
Jump to navigation
Jump to search
Prime factorization
22 × 19
Step size
63.4409 ¢
Octave
19\76ed81/5 (1205.38 ¢) (→ 1\4ed81/5)
Twelfth
30\76ed81/5 (1903.23 ¢) (→ 15\38ed81/5)
Consistency limit
10
Distinct consistency limit
7
← 75ed81/5 | 76ed81/5 | 77ed81/5 → |
76 equal divisions of 81/5 (abbreviated 76ed81/5) is a nonoctave tuning system that divides the interval of 81/5 into 76 equal parts of about 63.4 ¢ each. Each step represents a frequency ratio of (81/5)1/76, or the 76th root of 81/5.
It is very similar to 30edt.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 63.4 | 27/26, 28/27, 29/28 |
2 | 126.9 | 14/13, 29/27 |
3 | 190.3 | 19/17, 29/26, 39/35 |
4 | 253.8 | 22/19, 29/25, 37/32 |
5 | 317.2 | 6/5 |
6 | 380.6 | |
7 | 444.1 | 22/17, 31/24 |
8 | 507.5 | |
9 | 571 | 25/18, 32/23, 39/28 |
10 | 634.4 | 13/9, 36/25 |
11 | 697.8 | |
12 | 761.3 | 31/20 |
13 | 824.7 | 29/18, 37/23 |
14 | 888.2 | |
15 | 951.6 | 26/15 |
16 | 1015.1 | 9/5 |
17 | 1078.5 | 28/15 |
18 | 1141.9 | 29/15, 31/16 |
19 | 1205.4 | |
20 | 1268.8 | 25/12 |
21 | 1332.3 | |
22 | 1395.7 | 38/17 |
23 | 1459.1 | |
24 | 1522.6 | |
25 | 1586 | 5/2 |
26 | 1649.5 | |
27 | 1712.9 | 35/13 |
28 | 1776.3 | 39/14 |
29 | 1839.8 | 26/9 |
30 | 1903.2 | 3/1 |
31 | 1966.7 | 28/9 |
32 | 2030.1 | |
33 | 2093.5 | |
34 | 2157 | |
35 | 2220.4 | 18/5 |
36 | 2283.9 | |
37 | 2347.3 | 31/8 |
38 | 2410.8 | |
39 | 2474.2 | |
40 | 2537.6 | 13/3 |
41 | 2601.1 | 9/2 |
42 | 2664.5 | 14/3 |
43 | 2728 | 29/6 |
44 | 2791.4 | |
45 | 2854.8 | 26/5 |
46 | 2918.3 | 27/5 |
47 | 2981.7 | 28/5 |
48 | 3045.2 | 29/5 |
49 | 3108.6 | |
50 | 3172 | 25/4 |
51 | 3235.5 | |
52 | 3298.9 | |
53 | 3362.4 | |
54 | 3425.8 | |
55 | 3489.2 | 15/2 |
56 | 3552.7 | |
57 | 3616.1 | |
58 | 3679.6 | |
59 | 3743 | |
60 | 3806.5 | 9/1 |
61 | 3869.9 | 28/3 |
62 | 3933.3 | |
63 | 3996.8 | |
64 | 4060.2 | |
65 | 4123.7 | |
66 | 4187.1 | |
67 | 4250.5 | 35/3 |
68 | 4314 | |
69 | 4377.4 | |
70 | 4440.9 | |
71 | 4504.3 | |
72 | 4567.7 | |
73 | 4631.2 | |
74 | 4694.6 | |
75 | 4758.1 | |
76 | 4821.5 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.4 | +1.3 | +10.8 | +5.1 | +6.6 | -6.5 | +16.1 | +2.5 | +10.5 | -27.7 | +12.0 |
Relative (%) | +8.5 | +2.0 | +16.9 | +8.0 | +10.5 | -10.2 | +25.4 | +4.0 | +16.5 | -43.6 | +19.0 | |
Steps (reduced) |
19 (19) |
30 (30) |
38 (38) |
44 (44) |
49 (49) |
53 (53) |
57 (57) |
60 (60) |
63 (63) |
65 (65) |
68 (68) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.3 | -1.1 | +6.4 | +21.5 | -20.0 | +7.9 | -22.2 | +15.8 | -5.2 | -22.3 | +27.6 |
Relative (%) | +0.5 | -1.7 | +10.0 | +33.9 | -31.5 | +12.5 | -35.1 | +25.0 | -8.2 | -35.1 | +43.6 | |
Steps (reduced) |
70 (70) |
72 (72) |
74 (74) |
76 (0) |
77 (1) |
79 (3) |
80 (4) |
82 (6) |
83 (7) |
84 (8) |
86 (10) |
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |