User:Frostburn/Lens RTT
Monzos can be seen to arise from the properties of the logarithm of a fixed base
[math]\displaystyle{ \log_b (x^u y^v z^w) = u\log_b x + v\log_b y + w\log_b z }[/math].
Allowing us to treat the exponents as a linear vector [u, v, w⟩. (Using the primes x = 2, y = 3, z = 5, etc. as the basis.)
A similar situation happens with the logarithm of a fixed argument
[math]\displaystyle{ log_{x^u y^v z^w}(a) = u^{-1}\log_x a \oplus v^{-1}\log_y a \oplus w^{-1}\log_z a }[/math],
where lens addition [math]\displaystyle{ \oplus }[/math] is inspired by the thin lens equation f⁻¹ = u⁻¹ + v⁻¹
[math]\displaystyle{ f = u \oplus v }[/math].
Corresponding lens subtraction [math]\displaystyle{ \ominus }[/math] follows from the same equation
[math]\displaystyle{ u = f \ominus v }[/math].
Now we can treat the exponents as a lens-linear vector L[u⁻¹, v⁻¹, w⁻¹⟩. (Again using the primes as the basis.)
For now the point is that the lens-vals corresponding to these lens-monzos better capture the fact that they correspond to maps of fractions of equal temperaments. E.g. L5edo [math]\displaystyle{ \oplus }[/math] L7edo = L12edo
[math]\displaystyle{ \mathrm{L}\left \langle \frac{1}{5}, \frac{1}{8}, \frac{1}{12} \right ] \oplus \mathrm{L}\left \langle \frac{1}{7}, \frac{1}{11}, \frac{1}{16} \right ] = \mathrm{L}\left \langle \frac{1}{12}, \frac{1}{19}, \frac{1}{28} \right ] }[/math]