User:Frostburn/Fifth-equivalent Interval Classes

From Xenharmonic Wiki
Jump to navigation Jump to search

These tables list interval classes under 3/2-equivalence ordered by complexity analogous to odd-limit.

The tables only list new entries. The limits contain all previous limits.

Note that every third table is empty similar to throdd-limit.

1-(3/2-odd)-limit

Representative Subunison Inbounds Above (or at) 3/2
1/1 2/3 1/1 3/2

2-(3/2-odd)-limit

Representative Subunison Inbounds Above 3/2
1/2 3/4 9/8 27/16
2/1 8/9 4/3 2/1

4-(3/2-odd)-limit

Representative Subunison Inbounds Above 3/2
4 64/81 32/27 16/9
1/4 27/32 81/64 243/128

5-(3/2-odd)-limit

Representative Subunison Inbounds Above 3/2
1/5 27/40 81/80 243/160
5/2 20/27 10/9 5/3
4/5 4/5 6/5 9/5
5/4 5/6 5/4 15/8
3/5 9/10 27/20 81/40
5 80/81 40/27 20/9

7-(3/2-odd)-limit

Representative Subunison Inbounds Above 3/2
7/2 56/81 28/27 14/9
5/7 5/7 15/14 45/28
1/7 81/112 243/224 729/448
7/4 7/9 7/6 7/4
6/7 6/7 9/7 27/14
7 224/243 112/81 56/27
7/5 14/15 7/5 21/10
3/7 27/28 81/56 243/112

8-(3/2-odd)-limit

Representative Subunison Inbounds Above 3/2
8 512/729 256/243 128/81
8/5 32/45 16/15 8/5
8/7 16/21 8/7 12/7
7/8 7/8 21/16 63/32
5/8 15/16 45/32 135/64
1/8 243/256 729/512 2187/1024

10-(3/2-odd)-limit

Representative Subunison Inbounds Above 3/2
7/10 7/10 21/20 63/40
1/10 243/320 729/640 2187/1280
10 640/729 320/243 160/81
10/7 20/21 10/7 15/7

11-(3/2-odd)-limit

Representative Subunison Inbounds Above 3/2
5/11 15/22 45/44 135/88
1/11 243/352 729/704 2187/1408
11/7 44/63 22/21 11/7
11/2 176/243 88/81 44/27
8/11 8/11 12/11 18/11
11/10 11/15 11/10 33/20
11/4 22/27 11/9 11/6
9/11 9/11 27/22 81/44
10/11 10/11 15/11 45/22
11/8 11/12 11/8 33/16
3/11 81/88 243/176 729/352
7/11 21/22 63/44 189/88
11 704/729 352/243 176/81
11/5 44/45 22/15 11/5

13-(3/2-odd)-limit

Representative Subunison Inbounds Above 3/2
9/13 9/13 27/26 81/52
13/8 13/18 13/12 13/8
13 1664/2187 832/729 416/243
10/13 10/13 15/13 45/26
13/5 104/135 52/45 26/15
3/13 81/104 243/208 729/416
13/11 26/33 13/11 39/22
7/13 21/26 63/52 189/104
13/7 52/63 26/21 13/7
11/13 11/13 33/26 99/52
13/2 208/243 104/81 52/27
5/13 45/52 135/104 405/208
13/10 13/15 13/10 39/20
1/13 729/832 2187/1664 6561/3328
12/13 12/13 18/13 27/13
13/4 26/27 13/9 13/6

14-(3/2-odd)-limit

Representative Subunison Inbounds Above 3/2
14/13 28/39 14/13 21/13
11/14 11/14 33/28 99/56
5/14 45/56 135/112 405/224
1/14 729/896 2187/1792 6561/3584
14 1792/2187 896/729 448/243
14/5 112/135 56/45 28/15
14/11 28/33 14/11 21/11
13/14 13/14 39/28 117/56

16-(3/2-odd)-limit

Representative Subunison Inbounds Above 3/2
16/7 128/189 64/63 32/21
11/16 11/16 33/32 99/64
5/16 45/64 135/128 405/256
1/16 729/1024 2187/2048 6561/4096
13/16 13/16 39/32 117/64
16/13 32/39 16/13 24/13
16 2048/2187 1024/729 512/243
16/5 128/135 64/45 32/15
16/11 32/33 16/11 24/11
7/16 63/64 189/128 567/256