User:Contribution/JI intervals approximated by 97edt

From Xenharmonic Wiki
Jump to navigation Jump to search
This page is nominated for deletion.
Reason: These ratios are not relevant.
One of the operators will take care of it shortly.

97edt divides the tritave in 97 equal steps and the octave in 61.200186 equal steps of 19.607784 cents each. Its 31-limit patent val is <61 97 142 172 212 226 250 260 277 297 303|.

Factorization Ratio Value (¢) FJS Nearest
degree
Value (¢) Error (¢) Error (%) Consistency Consistent
degree
Value (¢) Error (¢) Error (%)
1/1
0
P1
0
0
0
0
CONSISTENT
0
0
0
0
3-5⋅51⋅72
245/243
14.190522
m25,7,7
1
19.607784
5.417261
27.628115
CONSISTENT
1
19.607784
5.417261
27.628115
34⋅7-1⋅11-1
81/77
87.676155
A17,11
4
78.431134
-9.245021
-47.149748
CONSISTENT
4
78.431134
-9.245021
-47.149748
3-3⋅291
29/27
123.712192
m229
6
117.646701
-6.065490
-30.934095
CONSISTENT
6
117.646701
-6.065490
-30.934095
33⋅5-2
27/25
133.237575
m25,5
7
137.254485
4.016910
20.486302
CONSISTENT
7
137.254485
4.016910
20.486302
3-2⋅5-1⋅72
49/45
147.428097
d37,75
8
156.862268
9.434171
48.114417
CONSISTENT
8
156.862268
9.434171
48.114417
3-4⋅71⋅131
91/81
201.533565
d37,13
10
196.077835
-5.455730
-27.824306
CONSISTENT
10
196.077835
-5.455730
-27.824306
3-3⋅311
31/27
239.170570
M231
12
235.293402
-3.877168
-19.773615
CONSISTENT
12
235.293402
-3.877168
-19.773615
31⋅51⋅13-1
15/13
247.741053
A2513
13
254.901186
7.160133
36.516788
CONSISTENT
13
254.901186
7.160133
36.516788
33⋅23-1
27/23
277.590655
m323
14
274.508969
-3.081686
-15.716647
CONSISTENT
14
274.508969
-3.081686
-15.716647
11-1⋅131
13/11
289.209719
m31311
15
294.116753
4.907033
25.025946
INCONSISTENT
14
274.508969
-14.700750
-74.974054
3-1⋅52⋅7-1
25/21
301.846520
A25,57
15
294.116753
-7.729768
-39.421935
CONSISTENT
15
294.116753
-7.729768
-39.421935
3-2⋅111
11/9
347.407941
m311
18
352.940103
5.532163
28.214115
CONSISTENT
18
352.940103
5.532163
28.214115
34⋅5-1⋅13-1
81/65
380.978628
M35,13
19
372.547887
-8.430741
-42.996910
INCONSISTENT
20
392.155670
11.177042
57.003090
32⋅7-1
9/7
435.084095
M37
22
431.371237
-3.712858
-18.935633
CONSISTENT
22
431.371237
-3.712858
-18.935633
3-3⋅51⋅71
35/27
449.274618
P45,7
23
450.979021
1.704403
8.692482
CONSISTENT
23
450.979021
1.704403
8.692482
31⋅51⋅11-1
15/11
536.950772
A4511
27
529.410155
-7.540617
-38.457266
CONSISTENT
27
529.410155
-7.540617
-38.457266
35⋅5-2⋅7-1
243/175
568.321670
P45,5,7
29
568.625722
0.304052
1.550669
CONSISTENT
29
568.625722
0.304052
1.550669
5-1⋅71
7/5
582.512193
d575
30
588.233505
5.721313
29.178784
CONSISTENT
30
588.233505
5.721313
29.178784
3-5⋅73
343/243
596.702715
d67,7,7
30
588.233505
-8.469210
-43.193101
INCONSISTENT
31
607.841289
11.138574
56.806899
33⋅19-1
27/19
608.351986
A419
31
607.841289
-0.510698
-2.604565
CONSISTENT
31
607.841289
-0.510698
-2.604565
35⋅13-2
243/169
628.719681
AA413,13
32
627.449072
-1.270608
-6.480122
INCONSISTENT
33
647.056856
18.337175
93.519878
3-2⋅131
13/9
636.617660
d513
32
627.449072
-9.168588
-46.759939
CONSISTENT
32
627.449072
-9.168588
-46.759939
34⋅5-1⋅11-1
81/55
670.188347
P55,11
34
666.664639
-3.523708
-17.970964
CONSISTENT
34
666.664639
-3.523708
-17.970964
3-4⋅112
121/81
694.815881
d511,11
35
686.272423
-8.543458
-43.571770
INCONSISTENT
36
705.880207
11.064325
56.428230
3-4⋅53
125/81
751.121138
A55,5,5
38
745.095774
-6.025365
-30.729453
CONSISTENT
38
745.095774
-6.025365
-30.729453
7-1⋅111
11/7
782.492036
P5117
40
784.311341
1.819305
9.278482
CONSISTENT
40
784.311341
1.819305
9.278482
33⋅17-1
27/17
800.909593
A517
41
803.919124
3.009531
15.348655
CONSISTENT
41
803.919124
3.009531
15.348655
31⋅71⋅13-1
21/13
830.253246
M6713
42
823.526908
-6.726338
-34.304428
INCONSISTENT
43
843.134691
12.881446
65.695572
34⋅7-2
81/49
870.168191
A57,7
44
862.742475
-7.425716
-37.871266
CONSISTENT
44
862.742475
-7.425716
-37.871266
3-1⋅51
5/3
884.358713
M65
45
882.350258
-2.008455
-10.243151
CONSISTENT
45
882.350258
-2.008455
-10.243151
35⋅11-1⋅13-1
243/143
917.929400
A611,13
47
921.565825
3.636425
18.545824
CONSISTENT
47
921.565825
3.636425
18.545824
3-4⋅111⋅131
143/81
984.025601
d711,13
50
980.389176
-3.636425
-18.545824
CONSISTENT
50
980.389176
-3.636425
-18.545824
32⋅5-1
9/5
1017.596288
m75
52
1019.604743
2.008455
10.243151
CONSISTENT
52
1019.604743
2.008455
10.243151
3-3⋅72
49/27
1031.786810
d87,7
53
1039.212526
7.425716
37.871266
CONSISTENT
53
1039.212526
7.425716
37.871266
7-1⋅131
13/7
1071.701755
m7137
55
1078.428093
6.726338
34.304428
INCONSISTENT
54
1058.820310
-12.881446
-65.695572
3-2⋅171
17/9
1101.045408
d817
56
1098.035877
-3.009531
-15.348655
CONSISTENT
56
1098.035877
-3.009531
-15.348655
31⋅71⋅11-1
21/11
1119.462965
P8711
57
1117.643660
-1.819305
-9.278482
CONSISTENT
57
1117.643660
-1.819305
-9.278482
35⋅5-3
243/125
1150.833863
d85,5,5
59
1156.859227
6.025365
30.729453
CONSISTENT
59
1156.859227
6.025365
30.729453
35⋅11-2
243/121
1207.139120
cA111,11
62
1215.682578
8.543458
43.571770
INCONSISTENT
61
1196.074794
-11.064325
-56.428230
3-3⋅51⋅111
55/27
1231.766654
P85,11
63
1235.290361
3.523708
17.970964
CONSISTENT
63
1235.290361
3.523708
17.970964
33⋅13-1
27/13
1265.337341
cA113
65
1274.505928
9.168588
46.759939
CONSISTENT
65
1274.505928
9.168588
46.759939
3-4⋅132
169/81
1273.235320
cd213,13
65
1274.505928
1.270608
6.480122
INCONSISTENT
64
1254.898145
-18.337175
-93.519878
3-2⋅191
19/9
1293.603014
cm219
66
1294.113712
0.510698
2.604565
CONSISTENT
66
1294.113712
0.510698
2.604565
31⋅51⋅7-1
15/7
1319.442808
cA157
67
1313.721495
-5.721313
-29.178784
CONSISTENT
67
1313.721495
-5.721313
-29.178784
3-4⋅52⋅71
175/81
1333.633331
cM25,5,7
68
1333.329279
-0.304052
-1.550669
CONSISTENT
68
1333.329279
-0.304052
-1.550669
5-1⋅111
11/5
1365.004228
cm2115
70
1372.544846
7.540617
38.457266
CONSISTENT
70
1372.544846
7.540617
38.457266
34⋅5-1⋅7-1
81/35
1452.680383
cM25,7
74
1450.975980
-1.704403
-8.692482
CONSISTENT
74
1450.975980
-1.704403
-8.692482
3-1⋅71
7/3
1466.870906
cm37
75
1470.583764
3.712858
18.935633
CONSISTENT
75
1470.583764
3.712858
18.935633
3-3⋅51⋅131
65/27
1520.976373
cm35,13
78
1529.407114
8.430741
42.996910
INCONSISTENT
77
1509.799331
-11.177042
-57.003090
33⋅11-1
27/11
1554.547060
cM311
79
1549.014898
-5.532163
-28.214115
CONSISTENT
79
1549.014898
-5.532163
-28.214115
32⋅5-2⋅71
63/25
1600.108480
cd475,5
82
1607.838248
7.729768
39.421935
CONSISTENT
82
1607.838248
7.729768
39.421935
31⋅111⋅13-1
33/13
1612.745281
cM31113
82
1607.838248
-4.907033
-25.025946
INCONSISTENT
83
1627.446032
14.700750
74.974054
3-2⋅231
23/9
1624.364346
cM323
83
1627.446032
3.081686
15.716647
CONSISTENT
83
1627.446032
3.081686
15.716647
5-1⋅131
13/5
1654.213948
cd4135
84
1647.053815
-7.160133
-36.516788
CONSISTENT
84
1647.053815
-7.160133
-36.516788
34⋅31-1
81/31
1662.784431
cP431
85
1666.661599
3.877168
19.773615
CONSISTENT
85
1666.661599
3.877168
19.773615
35⋅7-1⋅13-1
243/91
1700.421436
cA37,13
87
1705.877166
5.455730
27.824306
CONSISTENT
87
1705.877166
5.455730
27.824306
33⋅51⋅7-2
135/49
1754.526904
cA357,7
89
1745.092733
-9.434171
-48.114417
CONSISTENT
89
1745.092733
-9.434171
-48.114417
3-2⋅52
25/9
1768.717426
cA45,5
90
1764.700516
-4.016910
-20.486302
CONSISTENT
90
1764.700516
-4.016910
-20.486302
34⋅29-1
81/29
1778.242809
cA429
91
1784.308300
6.065490
30.934095
CONSISTENT
91
1784.308300
6.065490
30.934095
3-3⋅71⋅111
77/27
1814.278846
cd57,11
93
1823.523867
9.245021
47.149748
CONSISTENT
93
1823.523867
9.245021
47.149748
31
3/1
1901.955001
cP5
97
1901.955001
0
0
CONSISTENT
97
1901.955001
0
0


Main article: JI intervals approximated by various scales