User:Contribution/JI intervals approximated by 96edt

From Xenharmonic Wiki
Jump to navigation Jump to search
This page is nominated for deletion.
Reason: These ratios are not relevant.
One of the operators will take care of it shortly.

96edt divides the tritave in 96 equal steps and the octave in 60.569256 equal steps of 19.812031 cents each. Its 31-limit patent val is <61 96 141 170 210 224 248 257 274 294 300|.

Factorization Ratio Value (¢) FJS Nearest
degree
Value (¢) Error (¢) Error (%) Consistency Consistent
degree
Value (¢) Error (¢) Error (%)
1/1
0
P1
0
0
0
0
CONSISTENT
0
0
0
0
3-5⋅51⋅72
245/243
14.190522
m25,7,7
1
19.812031
5.621509
28.374217
CONSISTENT
1
19.812031
5.621509
28.374217
34⋅7-1⋅11-1
81/77
87.676155
A17,11
4
79.248125
-8.428030
-42.539957
CONSISTENT
4
79.248125
-8.428030
-42.539957
3-3⋅291
29/27
123.712192
m229
6
118.872188
-4.840004
-24.429620
CONSISTENT
6
118.872188
-4.840004
-24.429620
33⋅5-2
27/25
133.237575
m25,5
7
138.684219
5.446644
27.491598
INCONSISTENT
6
118.872188
-14.365387
-72.508402
3-2⋅5-1⋅72
49/45
147.428097
d37,75
7
138.684219
-8.743879
-44.134185
CONSISTENT
7
138.684219
-8.743879
-44.134185
3-4⋅71⋅131
91/81
201.533565
d37,13
10
198.120313
-3.413252
-17.228179
CONSISTENT
10
198.120313
-3.413252
-17.228179
3-3⋅311
31/27
239.170570
M231
12
237.744375
-1.426195
-7.198630
CONSISTENT
12
237.744375
-1.426195
-7.198630
31⋅51⋅13-1
15/13
247.741053
A2513
13
257.556406
9.815353
49.542388
CONSISTENT
13
257.556406
9.815353
49.542388
33⋅23-1
27/23
277.590655
m323
14
277.368438
-0.222218
-1.121630
CONSISTENT
14
277.368438
-0.222218
-1.121630
11-1⋅131
13/11
289.209719
m31311
15
297.180469
7.970749
40.231864
INCONSISTENT
14
277.368438
-11.841282
-59.768136
3-1⋅52⋅7-1
25/21
301.846520
A25,57
15
297.180469
-4.666052
-23.551606
INCONSISTENT
16
316.992500
15.145980
76.448394
3-2⋅111
11/9
347.407941
m311
18
356.616563
9.208622
46.479949
CONSISTENT
18
356.616563
9.208622
46.479949
34⋅5-1⋅13-1
81/65
380.978628
M35,13
19
376.428594
-4.550034
-22.966014
CONSISTENT
19
376.428594
-4.550034
-22.966014
32⋅7-1
9/7
435.084095
M37
22
435.864688
0.780592
3.939992
CONSISTENT
22
435.864688
0.780592
3.939992
3-3⋅51⋅71
35/27
449.274618
P45,7
23
455.676719
6.402101
32.314209
CONSISTENT
23
455.676719
6.402101
32.314209
31⋅51⋅11-1
15/11
536.950772
A4511
27
534.924844
-2.025928
-10.225748
CONSISTENT
27
534.924844
-2.025928
-10.225748
35⋅5-2⋅7-1
243/175
568.321670
P45,5,7
29
574.548907
6.227236
31.431590
INCONSISTENT
28
554.736875
-13.584795
-68.568410
5-1⋅71
7/5
582.512193
d575
29
574.548907
-7.963286
-40.194193
CONSISTENT
29
574.548907
-7.963286
-40.194193
3-5⋅73
343/243
596.702715
d67,7,7
30
594.360938
-2.341777
-11.819976
CONSISTENT
30
594.360938
-2.341777
-11.819976
33⋅19-1
27/19
608.351986
A419
31
614.172969
5.820983
29.381049
CONSISTENT
31
614.172969
5.820983
29.381049
35⋅13-2
243/169
628.719681
AA413,13
32
633.985000
5.265320
26.576374
CONSISTENT
32
633.985000
5.265320
26.576374
3-2⋅131
13/9
636.617660
d513
32
633.985000
-2.632660
-13.288187
CONSISTENT
32
633.985000
-2.632660
-13.288187
34⋅5-1⋅11-1
81/55
670.188347
P55,11
34
673.609063
3.420716
17.265850
INCONSISTENT
33
653.797032
-16.391316
-82.734150
3-4⋅112
121/81
694.815881
d511,11
35
693.421094
-1.394787
-7.040102
INCONSISTENT
36
713.233125
18.417244
92.959898
3-4⋅53
125/81
751.121138
A55,5,5
38
752.857188
1.736050
8.762603
INCONSISTENT
39
772.669219
21.548081
108.762603
7-1⋅111
11/7
782.492036
P5117
39
772.669219
-9.822817
-49.580059
INCONSISTENT
40
792.481250
9.989214
50.419941
33⋅17-1
27/17
800.909593
A517
40
792.481250
-8.428343
-42.541538
CONSISTENT
40
792.481250
-8.428343
-42.541538
31⋅71⋅13-1
21/13
830.253246
M6713
42
832.105313
1.852067
9.348195
CONSISTENT
42
832.105313
1.852067
9.348195
34⋅7-2
81/49
870.168191
A57,7
44
871.729375
1.561185
7.879984
CONSISTENT
44
871.729375
1.561185
7.879984
3-1⋅51
5/3
884.358713
M65
45
891.541407
7.182694
36.254201
CONSISTENT
45
891.541407
7.182694
36.254201
35⋅11-1⋅13-1
243/143
917.929400
A611,13
46
911.353438
-6.575962
-33.191762
CONSISTENT
46
911.353438
-6.575962
-33.191762
3-4⋅111⋅131
143/81
984.025601
d711,13
50
990.601563
6.575962
33.191762
CONSISTENT
50
990.601563
6.575962
33.191762
32⋅5-1
9/5
1017.596288
m75
51
1010.413594
-7.182694
-36.254201
CONSISTENT
51
1010.413594
-7.182694
-36.254201
3-3⋅72
49/27
1031.786810
d87,7
52
1030.225625
-1.561185
-7.879984
CONSISTENT
52
1030.225625
-1.561185
-7.879984
7-1⋅131
13/7
1071.701755
m7137
54
1069.849688
-1.852067
-9.348195
CONSISTENT
54
1069.849688
-1.852067
-9.348195
3-2⋅171
17/9
1101.045408
d817
56
1109.473751
8.428343
42.541538
CONSISTENT
56
1109.473751
8.428343
42.541538
31⋅71⋅11-1
21/11
1119.462965
P8711
57
1129.285782
9.822817
49.580059
INCONSISTENT
56
1109.473751
-9.989214
-50.419941
35⋅5-3
243/125
1150.833863
d85,5,5
58
1149.097813
-1.736050
-8.762603
INCONSISTENT
57
1129.285782
-21.548081
-108.762603
35⋅11-2
243/121
1207.139120
cA111,11
61
1208.533907
1.394787
7.040102
INCONSISTENT
60
1188.721876
-18.417244
-92.959898
3-3⋅51⋅111
55/27
1231.766654
P85,11
62
1228.345938
-3.420716
-17.265850
INCONSISTENT
63
1248.157969
16.391316
82.734150
33⋅13-1
27/13
1265.337341
cA113
64
1267.970001
2.632660
13.288187
CONSISTENT
64
1267.970001
2.632660
13.288187
3-4⋅132
169/81
1273.235320
cd213,13
64
1267.970001
-5.265320
-26.576374
CONSISTENT
64
1267.970001
-5.265320
-26.576374
3-2⋅191
19/9
1293.603014
cm219
65
1287.782032
-5.820983
-29.381049
CONSISTENT
65
1287.782032
-5.820983
-29.381049
31⋅51⋅7-1
15/7
1319.442808
cA157
67
1327.406094
7.963286
40.194193
CONSISTENT
67
1327.406094
7.963286
40.194193
3-4⋅52⋅71
175/81
1333.633331
cM25,5,7
67
1327.406094
-6.227236
-31.431590
INCONSISTENT
68
1347.218126
13.584795
68.568410
5-1⋅111
11/5
1365.004228
cm2115
69
1367.030157
2.025928
10.225748
CONSISTENT
69
1367.030157
2.025928
10.225748
34⋅5-1⋅7-1
81/35
1452.680383
cM25,7
73
1446.278282
-6.402101
-32.314209
CONSISTENT
73
1446.278282
-6.402101
-32.314209
3-1⋅71
7/3
1466.870906
cm37
74
1466.090313
-0.780592
-3.939992
CONSISTENT
74
1466.090313
-0.780592
-3.939992
3-3⋅51⋅131
65/27
1520.976373
cm35,13
77
1525.526407
4.550034
22.966014
CONSISTENT
77
1525.526407
4.550034
22.966014
33⋅11-1
27/11
1554.547060
cM311
78
1545.338438
-9.208622
-46.479949
CONSISTENT
78
1545.338438
-9.208622
-46.479949
32⋅5-2⋅71
63/25
1600.108480
cd475,5
81
1604.774532
4.666052
23.551606
INCONSISTENT
80
1584.962501
-15.145980
-76.448394
31⋅111⋅13-1
33/13
1612.745281
cM31113
81
1604.774532
-7.970749
-40.231864
INCONSISTENT
82
1624.586563
11.841282
59.768136
3-2⋅231
23/9
1624.364346
cM323
82
1624.586563
0.222218
1.121630
CONSISTENT
82
1624.586563
0.222218
1.121630
5-1⋅131
13/5
1654.213948
cd4135
83
1644.398594
-9.815353
-49.542388
CONSISTENT
83
1644.398594
-9.815353
-49.542388
34⋅31-1
81/31
1662.784431
cP431
84
1664.210626
1.426195
7.198630
CONSISTENT
84
1664.210626
1.426195
7.198630
35⋅7-1⋅13-1
243/91
1700.421436
cA37,13
86
1703.834688
3.413252
17.228179
CONSISTENT
86
1703.834688
3.413252
17.228179
33⋅51⋅7-2
135/49
1754.526904
cA357,7
89
1763.270782
8.743879
44.134185
CONSISTENT
89
1763.270782
8.743879
44.134185
3-2⋅52
25/9
1768.717426
cA45,5
89
1763.270782
-5.446644
-27.491598
INCONSISTENT
90
1783.082813
14.365387
72.508402
34⋅29-1
81/29
1778.242809
cA429
90
1783.082813
4.840004
24.429620
CONSISTENT
90
1783.082813
4.840004
24.429620
3-3⋅71⋅111
77/27
1814.278846
cd57,11
92
1822.706876
8.428030
42.539957
CONSISTENT
92
1822.706876
8.428030
42.539957
31
3/1
1901.955001
cP5
96
1901.955001
0
0
CONSISTENT
96
1901.955001
0
0


Main article: JI intervals approximated by various scales