User:Contribution/JI intervals approximated by 95edt

From Xenharmonic Wiki
Jump to navigation Jump to search
This page is nominated for deletion.
Reason: These ratios are not relevant.
One of the operators will take care of it shortly.

95edt divides the tritave in 95 equal steps and the octave in 59.938327 equal steps of 20.020579 cents each. Its 31-limit patent val is <60 95 139 168 207 222 245 255 271 291 297|.

Factorization Ratio Value (¢) FJS Nearest
degree
Value (¢) Error (¢) Error (%) Consistency Consistent
degree
Value (¢) Error (¢) Error (%)
1/1
0
P1
0
0
0
0
CONSISTENT
0
0
0
0
3-5⋅51⋅72
245/243
14.190522
m25,7,7
1
20.020579
5.830056
29.120319
INCONSISTENT
0
0
-14.190522
-70.879681
34⋅7-1⋅11-1
81/77
87.676155
A17,11
4
80.082316
-7.593839
-37.930166
INCONSISTENT
5
100.102895
12.426740
62.069834
3-3⋅291
29/27
123.712192
m229
6
120.123474
-3.588718
-17.925145
CONSISTENT
6
120.123474
-3.588718
-17.925145
33⋅5-2
27/25
133.237575
m25,5
7
140.144053
6.906478
34.496894
CONSISTENT
7
140.144053
6.906478
34.496894
3-2⋅5-1⋅72
49/45
147.428097
d37,75
7
140.144053
-7.284045
-36.382787
CONSISTENT
7
140.144053
-7.284045
-36.382787
3-4⋅71⋅131
91/81
201.533565
d37,13
10
200.205790
-1.327775
-6.632052
CONSISTENT
10
200.205790
-1.327775
-6.632052
3-3⋅311
31/27
239.170570
M231
12
240.246947
1.076378
5.376356
CONSISTENT
12
240.246947
1.076378
5.376356
31⋅51⋅13-1
15/13
247.741053
A2513
12
240.246947
-7.494105
-37.432012
CONSISTENT
12
240.246947
-7.494105
-37.432012
33⋅23-1
27/23
277.590655
m323
14
280.288105
2.697450
13.473387
CONSISTENT
14
280.288105
2.697450
13.473387
11-1⋅131
13/11
289.209719
m31311
14
280.288105
-8.921614
-44.562218
INCONSISTENT
15
300.308684
11.098965
55.437782
3-1⋅52⋅7-1
25/21
301.846520
A25,57
15
300.308684
-1.537836
-7.681277
CONSISTENT
15
300.308684
-1.537836
-7.681277
3-2⋅111
11/9
347.407941
m311
17
340.349842
-7.058098
-35.254217
CONSISTENT
17
340.349842
-7.058098
-35.254217
34⋅5-1⋅13-1
81/65
380.978628
M35,13
19
380.391000
-0.587628
-2.935118
CONSISTENT
19
380.391000
-0.587628
-2.935118
32⋅7-1
9/7
435.084095
M37
22
440.452737
5.368642
26.815617
CONSISTENT
22
440.452737
5.368642
26.815617
3-3⋅51⋅71
35/27
449.274618
P45,7
22
440.452737
-8.821881
-44.064064
CONSISTENT
22
440.452737
-8.821881
-44.064064
31⋅51⋅11-1
15/11
536.950772
A4511
27
540.555632
3.604859
18.005770
CONSISTENT
27
540.555632
3.604859
18.005770
35⋅5-2⋅7-1
243/175
568.321670
P45,5,7
28
560.576211
-7.745459
-38.687489
INCONSISTENT
29
580.596790
12.275120
61.312511
5-1⋅71
7/5
582.512193
d575
29
580.596790
-1.915403
-9.567170
CONSISTENT
29
580.596790
-1.915403
-9.567170
3-5⋅73
343/243
596.702715
d67,7,7
30
600.617369
3.914654
19.553149
INCONSISTENT
29
580.596790
-16.105925
-80.446851
33⋅19-1
27/19
608.351986
A419
30
600.617369
-7.734618
-38.633337
CONSISTENT
30
600.617369
-7.734618
-38.633337
35⋅13-2
243/169
628.719681
AA413,13
31
620.637948
-8.081733
-40.367130
CONSISTENT
31
620.637948
-8.081733
-40.367130
3-2⋅131
13/9
636.617660
d513
32
640.658527
4.040867
20.183565
CONSISTENT
32
640.658527
4.040867
20.183565
34⋅5-1⋅11-1
81/55
670.188347
P55,11
33
660.679106
-9.509242
-47.497336
INCONSISTENT
34
680.699685
10.511337
52.502664
3-4⋅112
121/81
694.815881
d511,11
35
700.720263
5.904382
29.491566
INCONSISTENT
34
680.699685
-14.116197
-70.508434
3-4⋅53
125/81
751.121138
A55,5,5
38
760.782000
9.660862
48.254660
INCONSISTENT
37
740.761421
-10.359717
-51.745340
7-1⋅111
11/7
782.492036
P5117
39
780.802579
-1.689457
-8.438600
CONSISTENT
39
780.802579
-1.689457
-8.438600
33⋅17-1
27/17
800.909593
A517
40
800.823158
-0.086435
-0.431730
CONSISTENT
40
800.823158
-0.086435
-0.431730
31⋅71⋅13-1
21/13
830.253246
M6713
41
820.843737
-9.409508
-46.999182
CONSISTENT
41
820.843737
-9.409508
-46.999182
34⋅7-2
81/49
870.168191
A57,7
43
860.884895
-9.283295
-46.368766
INCONSISTENT
44
880.905474
10.737284
53.631234
3-1⋅51
5/3
884.358713
M65
44
880.905474
-3.453239
-17.248447
CONSISTENT
44
880.905474
-3.453239
-17.248447
35⋅11-1⋅13-1
243/143
917.929400
A611,13
46
920.946632
3.017232
15.070652
CONSISTENT
46
920.946632
3.017232
15.070652
3-4⋅111⋅131
143/81
984.025601
d711,13
49
981.008369
-3.017232
-15.070652
CONSISTENT
49
981.008369
-3.017232
-15.070652
32⋅5-1
9/5
1017.596288
m75
51
1021.049527
3.453239
17.248447
CONSISTENT
51
1021.049527
3.453239
17.248447
3-3⋅72
49/27
1031.786810
d87,7
52
1041.070106
9.283295
46.368766
INCONSISTENT
51
1021.049527
-10.737284
-53.631234
7-1⋅131
13/7
1071.701755
m7137
54
1081.111264
9.409508
46.999182
CONSISTENT
54
1081.111264
9.409508
46.999182
3-2⋅171
17/9
1101.045408
d817
55
1101.131843
0.086435
0.431730
CONSISTENT
55
1101.131843
0.086435
0.431730
31⋅71⋅11-1
21/11
1119.462965
P8711
56
1121.152422
1.689457
8.438600
CONSISTENT
56
1121.152422
1.689457
8.438600
35⋅5-3
243/125
1150.833863
d85,5,5
57
1141.173001
-9.660862
-48.254660
INCONSISTENT
58
1161.193579
10.359717
51.745340
35⋅11-2
243/121
1207.139120
cA111,11
60
1201.234737
-5.904382
-29.491566
INCONSISTENT
61
1221.255316
14.116197
70.508434
3-3⋅51⋅111
55/27
1231.766654
P85,11
62
1241.275895
9.509242
47.497336
INCONSISTENT
61
1221.255316
-10.511337
-52.502664
33⋅13-1
27/13
1265.337341
cA113
63
1261.296474
-4.040867
-20.183565
CONSISTENT
63
1261.296474
-4.040867
-20.183565
3-4⋅132
169/81
1273.235320
cd213,13
64
1281.317053
8.081733
40.367130
CONSISTENT
64
1281.317053
8.081733
40.367130
3-2⋅191
19/9
1293.603014
cm219
65
1301.337632
7.734618
38.633337
CONSISTENT
65
1301.337632
7.734618
38.633337
31⋅51⋅7-1
15/7
1319.442808
cA157
66
1321.358211
1.915403
9.567170
CONSISTENT
66
1321.358211
1.915403
9.567170
3-4⋅52⋅71
175/81
1333.633331
cM25,5,7
67
1341.378790
7.745459
38.687489
INCONSISTENT
66
1321.358211
-12.275120
-61.312511
5-1⋅111
11/5
1365.004228
cm2115
68
1361.399369
-3.604859
-18.005770
CONSISTENT
68
1361.399369
-3.604859
-18.005770
34⋅5-1⋅7-1
81/35
1452.680383
cM25,7
73
1461.502264
8.821881
44.064064
CONSISTENT
73
1461.502264
8.821881
44.064064
3-1⋅71
7/3
1466.870906
cm37
73
1461.502264
-5.368642
-26.815617
CONSISTENT
73
1461.502264
-5.368642
-26.815617
3-3⋅51⋅131
65/27
1520.976373
cm35,13
76
1521.564001
0.587628
2.935118
CONSISTENT
76
1521.564001
0.587628
2.935118
33⋅11-1
27/11
1554.547060
cM311
78
1561.605159
7.058098
35.254217
CONSISTENT
78
1561.605159
7.058098
35.254217
32⋅5-2⋅71
63/25
1600.108480
cd475,5
80
1601.646317
1.537836
7.681277
CONSISTENT
80
1601.646317
1.537836
7.681277
31⋅111⋅13-1
33/13
1612.745281
cM31113
81
1621.666895
8.921614
44.562218
INCONSISTENT
80
1601.646317
-11.098965
-55.437782
3-2⋅231
23/9
1624.364346
cM323
81
1621.666895
-2.697450
-13.473387
CONSISTENT
81
1621.666895
-2.697450
-13.473387
5-1⋅131
13/5
1654.213948
cd4135
83
1661.708053
7.494105
37.432012
CONSISTENT
83
1661.708053
7.494105
37.432012
34⋅31-1
81/31
1662.784431
cP431
83
1661.708053
-1.076378
-5.376356
CONSISTENT
83
1661.708053
-1.076378
-5.376356
35⋅7-1⋅13-1
243/91
1700.421436
cA37,13
85
1701.749211
1.327775
6.632052
CONSISTENT
85
1701.749211
1.327775
6.632052
33⋅51⋅7-2
135/49
1754.526904
cA357,7
88
1761.810948
7.284045
36.382787
CONSISTENT
88
1761.810948
7.284045
36.382787
3-2⋅52
25/9
1768.717426
cA45,5
88
1761.810948
-6.906478
-34.496894
CONSISTENT
88
1761.810948
-6.906478
-34.496894
34⋅29-1
81/29
1778.242809
cA429
89
1781.831527
3.588718
17.925145
CONSISTENT
89
1781.831527
3.588718
17.925145
3-3⋅71⋅111
77/27
1814.278846
cd57,11
91
1821.872685
7.593839
37.930166
INCONSISTENT
90
1801.852106
-12.426740
-62.069834
31
3/1
1901.955001
cP5
95
1901.955001
0
0
CONSISTENT
95
1901.955001
0
0


Main article: JI intervals approximated by various scales