User:Contribution/JI intervals approximated by 92edt

From Xenharmonic Wiki
Jump to navigation Jump to search
This page is nominated for deletion.
Reason: These ratios are not relevant.
One of the operators will take care of it shortly.

92edt divides the tritave in 92 equal steps and the octave in 58.045537 equal steps of 20.673424 cents each. Its 31-limit patent val is <58 92 135 163 201 215 237 247 263 282 288|.

Factorization Ratio Value (¢) FJS Nearest
degree
Value (¢) Error (¢) Error (%) Consistency Consistent
degree
Value (¢) Error (¢) Error (%)
1/1
0
P1
0
0
0
0
CONSISTENT
0
0
0
0
3-5⋅51⋅72
245/243
14.190522
m25,7,7
1
20.673424
6.482901
31.358625
CONSISTENT
1
20.673424
6.482901
31.358625
34⋅7-1⋅11-1
81/77
87.676155
A17,11
4
82.693696
-4.982459
-24.100792
CONSISTENT
4
82.693696
-4.982459
-24.100792
3-3⋅291
29/27
123.712192
m229
6
124.040544
0.328352
1.588281
CONSISTENT
6
124.040544
0.328352
1.588281
33⋅5-2
27/25
133.237575
m25,5
6
124.040544
-9.197031
-44.487219
CONSISTENT
6
124.040544
-9.197031
-44.487219
3-2⋅5-1⋅72
49/45
147.428097
d37,75
7
144.713967
-2.714130
-13.128594
CONSISTENT
7
144.713967
-2.714130
-13.128594
3-4⋅71⋅131
91/81
201.533565
d37,13
10
206.734239
5.200674
25.156329
CONSISTENT
10
206.734239
5.200674
25.156329
3-3⋅311
31/27
239.170570
M231
12
248.081087
8.910517
43.101313
CONSISTENT
12
248.081087
8.910517
43.101313
31⋅51⋅13-1
15/13
247.741053
A2513
12
248.081087
0.340034
1.644789
CONSISTENT
12
248.081087
0.340034
1.644789
33⋅23-1
27/23
277.590655
m323
13
268.754511
-8.836144
-42.741562
CONSISTENT
13
268.754511
-8.836144
-42.741562
11-1⋅131
13/11
289.209719
m31311
14
289.427935
0.218216
1.055536
CONSISTENT
14
289.427935
0.218216
1.055536
3-1⋅52⋅7-1
25/21
301.846520
A25,57
15
310.101359
8.254838
39.929711
CONSISTENT
15
310.101359
8.254838
39.929711
3-2⋅111
11/9
347.407941
m311
17
351.448207
4.040266
19.543284
CONSISTENT
17
351.448207
4.040266
19.543284
34⋅5-1⋅13-1
81/65
380.978628
M35,13
18
372.121631
-8.856997
-42.842430
CONSISTENT
18
372.121631
-8.856997
-42.842430
32⋅7-1
9/7
435.084095
M37
21
434.141902
-0.942193
-4.557508
CONSISTENT
21
434.141902
-0.942193
-4.557508
3-3⋅51⋅71
35/27
449.274618
P45,7
22
454.815326
5.540709
26.801117
CONSISTENT
22
454.815326
5.540709
26.801117
31⋅51⋅11-1
15/11
536.950772
A4511
26
537.509022
0.558250
2.700325
CONSISTENT
26
537.509022
0.558250
2.700325
35⋅5-2⋅7-1
243/175
568.321670
P45,5,7
27
558.182446
-10.139224
-49.044727
CONSISTENT
27
558.182446
-10.139224
-49.044727
5-1⋅71
7/5
582.512193
d575
28
578.855870
-3.656323
-17.686102
CONSISTENT
28
578.855870
-3.656323
-17.686102
3-5⋅73
343/243
596.702715
d67,7,7
29
599.529294
2.826579
13.672523
CONSISTENT
29
599.529294
2.826579
13.672523
33⋅19-1
27/19
608.351986
A419
29
599.529294
-8.822693
-42.676495
CONSISTENT
29
599.529294
-8.822693
-42.676495
35⋅13-2
243/169
628.719681
AA413,13
30
620.202718
-8.516963
-41.197642
CONSISTENT
30
620.202718
-8.516963
-41.197642
3-2⋅131
13/9
636.617660
d513
31
640.876142
4.258482
20.598821
CONSISTENT
31
640.876142
4.258482
20.598821
34⋅5-1⋅11-1
81/55
670.188347
P55,11
32
661.549566
-8.638782
-41.786894
CONSISTENT
32
661.549566
-8.638782
-41.786894
3-4⋅112
121/81
694.815881
d511,11
34
702.896413
8.080532
39.086569
CONSISTENT
34
702.896413
8.080532
39.086569
3-4⋅53
125/81
751.121138
A55,5,5
36
744.243261
-6.877877
-33.269172
INCONSISTENT
37
764.916685
13.795547
66.730828
7-1⋅111
11/7
782.492036
P5117
38
785.590109
3.098073
14.985777
CONSISTENT
38
785.590109
3.098073
14.985777
33⋅17-1
27/17
800.909593
A517
39
806.263533
5.353940
25.897693
CONSISTENT
39
806.263533
5.353940
25.897693
31⋅71⋅13-1
21/13
830.253246
M6713
40
826.936957
-3.316289
-16.041313
CONSISTENT
40
826.936957
-3.316289
-16.041313
34⋅7-2
81/49
870.168191
A57,7
42
868.283805
-1.884386
-9.115015
CONSISTENT
42
868.283805
-1.884386
-9.115015
3-1⋅51
5/3
884.358713
M65
43
888.957229
4.598516
22.243609
CONSISTENT
43
888.957229
4.598516
22.243609
35⋅11-1⋅13-1
243/143
917.929400
A611,13
44
909.630653
-8.298748
-40.142105
CONSISTENT
44
909.630653
-8.298748
-40.142105
3-4⋅111⋅131
143/81
984.025601
d711,13
48
992.324348
8.298748
40.142105
CONSISTENT
48
992.324348
8.298748
40.142105
32⋅5-1
9/5
1017.596288
m75
49
1012.997772
-4.598516
-22.243609
CONSISTENT
49
1012.997772
-4.598516
-22.243609
3-3⋅72
49/27
1031.786810
d87,7
50
1033.671196
1.884386
9.115015
CONSISTENT
50
1033.671196
1.884386
9.115015
7-1⋅131
13/7
1071.701755
m7137
52
1075.018044
3.316289
16.041313
CONSISTENT
52
1075.018044
3.316289
16.041313
3-2⋅171
17/9
1101.045408
d817
53
1095.691468
-5.353940
-25.897693
CONSISTENT
53
1095.691468
-5.353940
-25.897693
31⋅71⋅11-1
21/11
1119.462965
P8711
54
1116.364892
-3.098073
-14.985777
CONSISTENT
54
1116.364892
-3.098073
-14.985777
35⋅5-3
243/125
1150.833863
d85,5,5
56
1157.711740
6.877877
33.269172
INCONSISTENT
55
1137.038316
-13.795547
-66.730828
35⋅11-2
243/121
1207.139120
cA111,11
58
1199.058588
-8.080532
-39.086569
CONSISTENT
58
1199.058588
-8.080532
-39.086569
3-3⋅51⋅111
55/27
1231.766654
P85,11
60
1240.405435
8.638782
41.786894
CONSISTENT
60
1240.405435
8.638782
41.786894
33⋅13-1
27/13
1265.337341
cA113
61
1261.078859
-4.258482
-20.598821
CONSISTENT
61
1261.078859
-4.258482
-20.598821
3-4⋅132
169/81
1273.235320
cd213,13
62
1281.752283
8.516963
41.197642
CONSISTENT
62
1281.752283
8.516963
41.197642
3-2⋅191
19/9
1293.603014
cm219
63
1302.425707
8.822693
42.676495
CONSISTENT
63
1302.425707
8.822693
42.676495
31⋅51⋅7-1
15/7
1319.442808
cA157
64
1323.099131
3.656323
17.686102
CONSISTENT
64
1323.099131
3.656323
17.686102
3-4⋅52⋅71
175/81
1333.633331
cM25,5,7
65
1343.772555
10.139224
49.044727
CONSISTENT
65
1343.772555
10.139224
49.044727
5-1⋅111
11/5
1365.004228
cm2115
66
1364.445979
-0.558250
-2.700325
CONSISTENT
66
1364.445979
-0.558250
-2.700325
34⋅5-1⋅7-1
81/35
1452.680383
cM25,7
70
1447.139675
-5.540709
-26.801117
CONSISTENT
70
1447.139675
-5.540709
-26.801117
3-1⋅71
7/3
1466.870906
cm37
71
1467.813098
0.942193
4.557508
CONSISTENT
71
1467.813098
0.942193
4.557508
3-3⋅51⋅131
65/27
1520.976373
cm35,13
74
1529.833370
8.856997
42.842430
CONSISTENT
74
1529.833370
8.856997
42.842430
33⋅11-1
27/11
1554.547060
cM311
75
1550.506794
-4.040266
-19.543284
CONSISTENT
75
1550.506794
-4.040266
-19.543284
32⋅5-2⋅71
63/25
1600.108480
cd475,5
77
1591.853642
-8.254838
-39.929711
CONSISTENT
77
1591.853642
-8.254838
-39.929711
31⋅111⋅13-1
33/13
1612.745281
cM31113
78
1612.527066
-0.218216
-1.055536
CONSISTENT
78
1612.527066
-0.218216
-1.055536
3-2⋅231
23/9
1624.364346
cM323
79
1633.200490
8.836144
42.741562
CONSISTENT
79
1633.200490
8.836144
42.741562
5-1⋅131
13/5
1654.213948
cd4135
80
1653.873914
-0.340034
-1.644789
CONSISTENT
80
1653.873914
-0.340034
-1.644789
34⋅31-1
81/31
1662.784431
cP431
80
1653.873914
-8.910517
-43.101313
CONSISTENT
80
1653.873914
-8.910517
-43.101313
35⋅7-1⋅13-1
243/91
1700.421436
cA37,13
82
1695.220762
-5.200674
-25.156329
CONSISTENT
82
1695.220762
-5.200674
-25.156329
33⋅51⋅7-2
135/49
1754.526904
cA357,7
85
1757.241033
2.714130
13.128594
CONSISTENT
85
1757.241033
2.714130
13.128594
3-2⋅52
25/9
1768.717426
cA45,5
86
1777.914457
9.197031
44.487219
CONSISTENT
86
1777.914457
9.197031
44.487219
34⋅29-1
81/29
1778.242809
cA429
86
1777.914457
-0.328352
-1.588281
CONSISTENT
86
1777.914457
-0.328352
-1.588281
3-3⋅71⋅111
77/27
1814.278846
cd57,11
88
1819.261305
4.982459
24.100792
CONSISTENT
88
1819.261305
4.982459
24.100792
31
3/1
1901.955001
cP5
92
1901.955001
0
0
CONSISTENT
92
1901.955001
0
0


Main article: JI intervals approximated by various scales