User:Contribution/JI intervals approximated by 91edt

From Xenharmonic Wiki
Jump to navigation Jump to search
This page is nominated for deletion.
Reason: These ratios are not relevant.
One of the operators will take care of it shortly.

91edt divides the tritave in 91 equal steps and the octave in 57.414608 equal steps of 20.900604 cents each. Its 31-limit patent val is <57 91 133 161 199 212 235 244 260 279 284|.

Factorization Ratio Value (¢) FJS Nearest
degree
Value (¢) Error (¢) Error (%) Consistency Consistent
degree
Value (¢) Error (¢) Error (%)
1/1
0
P1
0
0
0
0
CONSISTENT
0
0
0
0
3-5⋅51⋅72
245/243
14.190522
m25,7,7
1
20.900604
6.710082
32.104727
INCONSISTENT
0
0
-14.190522
-67.895273
34⋅7-1⋅11-1
81/77
87.676155
A17,11
4
83.602418
-4.073737
-19.491001
CONSISTENT
4
83.602418
-4.073737
-19.491001
3-3⋅291
29/27
123.712192
m229
6
125.403626
1.691435
8.092756
CONSISTENT
6
125.403626
1.691435
8.092756
33⋅5-2
27/25
133.237575
m25,5
6
125.403626
-7.833948
-37.481923
INCONSISTENT
7
146.304231
13.066656
62.518077
3-2⋅5-1⋅72
49/45
147.428097
d37,75
7
146.304231
-1.123867
-5.377196
CONSISTENT
7
146.304231
-1.123867
-5.377196
3-4⋅71⋅131
91/81
201.533565
d37,13
10
209.006044
7.472479
35.752455
INCONSISTENT
9
188.105440
-13.428125
-64.247545
3-3⋅311
31/27
239.170570
M231
11
229.906648
-9.263921
-44.323701
CONSISTENT
11
229.906648
-9.263921
-44.323701
31⋅51⋅13-1
15/13
247.741053
A2513
12
250.807253
3.066200
14.670389
CONSISTENT
12
250.807253
3.066200
14.670389
33⋅23-1
27/23
277.590655
m323
13
271.707857
-5.882798
-28.146545
CONSISTENT
13
271.707857
-5.882798
-28.146545
11-1⋅131
13/11
289.209719
m31311
14
292.608462
3.398742
16.261454
INCONSISTENT
13
271.707857
-17.501862
-83.738546
3-1⋅52⋅7-1
25/21
301.846520
A25,57
14
292.608462
-9.238059
-44.199960
CONSISTENT
14
292.608462
-9.238059
-44.199960
3-2⋅111
11/9
347.407941
m311
17
355.310275
7.902334
37.809118
CONSISTENT
17
355.310275
7.902334
37.809118
34⋅5-1⋅13-1
81/65
380.978628
M35,13
18
376.210879
-4.767749
-22.811534
INCONSISTENT
19
397.111484
16.132856
77.188466
32⋅7-1
9/7
435.084095
M37
21
438.912693
3.828597
18.318117
CONSISTENT
21
438.912693
3.828597
18.318117
3-3⋅51⋅71
35/27
449.274618
P45,7
21
438.912693
-10.361925
-49.577156
CONSISTENT
21
438.912693
-10.361925
-49.577156
31⋅51⋅11-1
15/11
536.950772
A4511
26
543.415715
6.464942
30.931843
INCONSISTENT
25
522.515110
-14.435662
-69.068157
35⋅5-2⋅7-1
243/175
568.321670
P45,5,7
27
564.316319
-4.005351
-19.163806
INCONSISTENT
28
585.216923
16.895253
80.836194
5-1⋅71
7/5
582.512193
d575
28
585.216923
2.704731
12.940921
CONSISTENT
28
585.216923
2.704731
12.940921
3-5⋅73
343/243
596.702715
d67,7,7
29
606.117528
9.414813
45.045648
INCONSISTENT
28
585.216923
-11.485792
-54.954352
33⋅19-1
27/19
608.351986
A419
29
606.117528
-2.234459
-10.690881
CONSISTENT
29
606.117528
-2.234459
-10.690881
35⋅13-2
243/169
628.719681
AA413,13
30
627.018132
-1.701549
-8.141146
INCONSISTENT
31
647.918737
19.199056
91.858854
3-2⋅131
13/9
636.617660
d513
30
627.018132
-9.599528
-45.929427
CONSISTENT
30
627.018132
-9.599528
-45.929427
34⋅5-1⋅11-1
81/55
670.188347
P55,11
32
668.819341
-1.369006
-6.550080
CONSISTENT
32
668.819341
-1.369006
-6.550080
3-4⋅112
121/81
694.815881
d511,11
33
689.719945
-5.095936
-24.381763
INCONSISTENT
34
710.620550
15.804669
75.618237
3-4⋅53
125/81
751.121138
A55,5,5
36
752.421759
1.300620
6.222884
INCONSISTENT
35
731.521154
-19.599984
-93.777116
7-1⋅111
11/7
782.492036
P5117
37
773.322363
-9.169673
-43.872764
INCONSISTENT
38
794.222967
11.730931
56.127236
33⋅17-1
27/17
800.909593
A517
38
794.222967
-6.686626
-31.992499
CONSISTENT
38
794.222967
-6.686626
-31.992499
31⋅71⋅13-1
21/13
830.253246
M6713
40
836.024176
5.770931
27.611310
CONSISTENT
40
836.024176
5.770931
27.611310
34⋅7-2
81/49
870.168191
A57,7
42
877.825385
7.657194
36.636235
CONSISTENT
42
877.825385
7.657194
36.636235
3-1⋅51
5/3
884.358713
M65
42
877.825385
-6.533328
-31.259039
CONSISTENT
42
877.825385
-6.533328
-31.259039
35⋅11-1⋅13-1
243/143
917.929400
A611,13
44
919.626594
1.697194
8.120309
CONSISTENT
44
919.626594
1.697194
8.120309
3-4⋅111⋅131
143/81
984.025601
d711,13
47
982.328407
-1.697194
-8.120309
CONSISTENT
47
982.328407
-1.697194
-8.120309
32⋅5-1
9/5
1017.596288
m75
49
1024.129616
6.533328
31.259039
CONSISTENT
49
1024.129616
6.533328
31.259039
3-3⋅72
49/27
1031.786810
d87,7
49
1024.129616
-7.657194
-36.636235
CONSISTENT
49
1024.129616
-7.657194
-36.636235
7-1⋅131
13/7
1071.701755
m7137
51
1065.930825
-5.770931
-27.611310
CONSISTENT
51
1065.930825
-5.770931
-27.611310
3-2⋅171
17/9
1101.045408
d817
53
1107.732033
6.686626
31.992499
CONSISTENT
53
1107.732033
6.686626
31.992499
31⋅71⋅11-1
21/11
1119.462965
P8711
54
1128.632638
9.169673
43.872764
INCONSISTENT
53
1107.732033
-11.730931
-56.127236
35⋅5-3
243/125
1150.833863
d85,5,5
55
1149.533242
-1.300620
-6.222884
INCONSISTENT
56
1170.433847
19.599984
93.777116
35⋅11-2
243/121
1207.139120
cA111,11
58
1212.235055
5.095936
24.381763
INCONSISTENT
57
1191.334451
-15.804669
-75.618237
3-3⋅51⋅111
55/27
1231.766654
P85,11
59
1233.135660
1.369006
6.550080
CONSISTENT
59
1233.135660
1.369006
6.550080
33⋅13-1
27/13
1265.337341
cA113
61
1274.936869
9.599528
45.929427
CONSISTENT
61
1274.936869
9.599528
45.929427
3-4⋅132
169/81
1273.235320
cd213,13
61
1274.936869
1.701549
8.141146
INCONSISTENT
60
1254.036264
-19.199056
-91.858854
3-2⋅191
19/9
1293.603014
cm219
62
1295.837473
2.234459
10.690881
CONSISTENT
62
1295.837473
2.234459
10.690881
31⋅51⋅7-1
15/7
1319.442808
cA157
63
1316.738078
-2.704731
-12.940921
CONSISTENT
63
1316.738078
-2.704731
-12.940921
3-4⋅52⋅71
175/81
1333.633331
cM25,5,7
64
1337.638682
4.005351
19.163806
INCONSISTENT
63
1316.738078
-16.895253
-80.836194
5-1⋅111
11/5
1365.004228
cm2115
65
1358.539286
-6.464942
-30.931843
INCONSISTENT
66
1379.439891
14.435662
69.068157
34⋅5-1⋅7-1
81/35
1452.680383
cM25,7
70
1463.042308
10.361925
49.577156
CONSISTENT
70
1463.042308
10.361925
49.577156
3-1⋅71
7/3
1466.870906
cm37
70
1463.042308
-3.828597
-18.318117
CONSISTENT
70
1463.042308
-3.828597
-18.318117
3-3⋅51⋅131
65/27
1520.976373
cm35,13
73
1525.744122
4.767749
22.811534
INCONSISTENT
72
1504.843517
-16.132856
-77.188466
33⋅11-1
27/11
1554.547060
cM311
74
1546.644726
-7.902334
-37.809118
CONSISTENT
74
1546.644726
-7.902334
-37.809118
32⋅5-2⋅71
63/25
1600.108480
cd475,5
77
1609.346539
9.238059
44.199960
CONSISTENT
77
1609.346539
9.238059
44.199960
31⋅111⋅13-1
33/13
1612.745281
cM31113
77
1609.346539
-3.398742
-16.261454
INCONSISTENT
78
1630.247144
17.501862
83.738546
3-2⋅231
23/9
1624.364346
cM323
78
1630.247144
5.882798
28.146545
CONSISTENT
78
1630.247144
5.882798
28.146545
5-1⋅131
13/5
1654.213948
cd4135
79
1651.147748
-3.066200
-14.670389
CONSISTENT
79
1651.147748
-3.066200
-14.670389
34⋅31-1
81/31
1662.784431
cP431
80
1672.048352
9.263921
44.323701
CONSISTENT
80
1672.048352
9.263921
44.323701
35⋅7-1⋅13-1
243/91
1700.421436
cA37,13
81
1692.948957
-7.472479
-35.752455
INCONSISTENT
82
1713.849561
13.428125
64.247545
33⋅51⋅7-2
135/49
1754.526904
cA357,7
84
1755.650770
1.123867
5.377196
CONSISTENT
84
1755.650770
1.123867
5.377196
3-2⋅52
25/9
1768.717426
cA45,5
85
1776.551374
7.833948
37.481923
INCONSISTENT
84
1755.650770
-13.066656
-62.518077
34⋅29-1
81/29
1778.242809
cA429
85
1776.551374
-1.691435
-8.092756
CONSISTENT
85
1776.551374
-1.691435
-8.092756
3-3⋅71⋅111
77/27
1814.278846
cd57,11
87
1818.352583
4.073737
19.491001
CONSISTENT
87
1818.352583
4.073737
19.491001
31
3/1
1901.955001
cP5
91
1901.955001
0
0
CONSISTENT
91
1901.955001
0
0


Main article: JI intervals approximated by various scales