User:Contribution/JI intervals approximated by 89edt

From Xenharmonic Wiki
Jump to navigation Jump to search
This page is nominated for deletion.
Reason: These ratios are not relevant.
One of the operators will take care of it shortly.

89edt divides the tritave in 89 equal steps and the octave in 56.152748 equal steps of 21.370281 cents each. Its 31-limit patent val is <56 89 130 158 194 208 230 239 254 273 278|.

Factorization Ratio Value (¢) FJS Nearest
degree
Value (¢) Error (¢) Error (%) Consistency Consistent
degree
Value (¢) Error (¢) Error (%)
1/1
0
P1
0
0
0
0
CONSISTENT
0
0
0
0
3-5⋅51⋅72
245/243
14.190522
m25,7,7
1
21.370281
7.179758
33.596931
CONSISTENT
1
21.370281
7.179758
33.596931
34⋅7-1⋅11-1
81/77
87.676155
A17,11
4
85.481124
-2.195031
-10.271419
CONSISTENT
4
85.481124
-2.195031
-10.271419
3-3⋅291
29/27
123.712192
m229
6
128.221685
4.509494
21.101706
CONSISTENT
6
128.221685
4.509494
21.101706
33⋅5-2
27/25
133.237575
m25,5
6
128.221685
-5.015889
-23.471331
INCONSISTENT
7
149.591966
16.354391
76.528669
3-2⋅5-1⋅72
49/45
147.428097
d37,75
7
149.591966
2.163869
10.125599
INCONSISTENT
8
170.962247
23.534150
110.125599
3-4⋅71⋅131
91/81
201.533565
d37,13
9
192.332528
-9.201037
-43.055291
INCONSISTENT
10
213.702809
12.169244
56.944709
3-3⋅311
31/27
239.170570
M231
11
235.073090
-4.097480
-19.173730
CONSISTENT
11
235.073090
-4.097480
-19.173730
31⋅51⋅13-1
15/13
247.741053
A2513
12
256.443371
8.702318
40.721589
INCONSISTENT
11
235.073090
-12.667963
-59.278411
33⋅23-1
27/23
277.590655
m323
13
277.813652
0.222996
1.043489
CONSISTENT
13
277.813652
0.222996
1.043489
11-1⋅131
13/11
289.209719
m31311
14
299.183933
9.974213
46.673291
CONSISTENT
14
299.183933
9.974213
46.673291
3-1⋅52⋅7-1
25/21
301.846520
A25,57
14
299.183933
-2.662588
-12.459301
INCONSISTENT
13
277.813652
-24.032869
-112.459301
3-2⋅111
11/9
347.407941
m311
16
341.924495
-5.483446
-25.659214
CONSISTENT
16
341.924495
-5.483446
-25.659214
34⋅5-1⋅13-1
81/65
380.978628
M35,13
18
384.665056
3.686429
17.250258
CONSISTENT
18
384.665056
3.686429
17.250258
32⋅7-1
9/7
435.084095
M37
20
427.405618
-7.678477
-35.930632
CONSISTENT
20
427.405618
-7.678477
-35.930632
3-3⋅51⋅71
35/27
449.274618
P45,7
21
448.775899
-0.498719
-2.333702
CONSISTENT
21
448.775899
-0.498719
-2.333702
31⋅51⋅11-1
15/11
536.950772
A4511
25
534.257023
-2.693750
-12.605120
CONSISTENT
25
534.257023
-2.693750
-12.605120
35⋅5-2⋅7-1
243/175
568.321670
P45,5,7
27
576.997585
8.675914
40.598036
CONSISTENT
27
576.997585
8.675914
40.598036
5-1⋅71
7/5
582.512193
d575
27
576.997585
-5.514608
-25.805033
INCONSISTENT
28
598.367865
15.855673
74.194967
3-5⋅73
343/243
596.702715
d67,7,7
28
598.367865
1.665150
7.791897
INCONSISTENT
29
619.738146
23.035431
107.791897
33⋅19-1
27/19
608.351986
A419
28
598.367865
-9.984121
-46.719653
CONSISTENT
28
598.367865
-9.984121
-46.719653
35⋅13-2
243/169
628.719681
AA413,13
29
619.738146
-8.981534
-42.028153
CONSISTENT
29
619.738146
-8.981534
-42.028153
3-2⋅131
13/9
636.617660
d513
30
641.108427
4.490767
21.014077
CONSISTENT
30
641.108427
4.490767
21.014077
34⋅5-1⋅11-1
81/55
670.188347
P55,11
31
662.478708
-7.709639
-36.076452
INCONSISTENT
32
683.848989
13.660642
63.923548
3-4⋅112
121/81
694.815881
d511,11
33
705.219270
10.403389
48.681572
INCONSISTENT
32
683.848989
-10.966892
-51.318428
3-4⋅53
125/81
751.121138
A55,5,5
35
747.959832
-3.161306
-14.793003
INCONSISTENT
34
726.589551
-24.531587
-114.793003
7-1⋅111
11/7
782.492036
P5117
37
790.700394
8.208358
38.410154
INCONSISTENT
36
769.330113
-13.161923
-61.589846
33⋅17-1
27/17
800.909593
A517
37
790.700394
-10.209199
-47.772884
CONSISTENT
37
790.700394
-10.209199
-47.772884
31⋅71⋅13-1
21/13
830.253246
M6713
39
833.440955
3.187710
14.916556
CONSISTENT
39
833.440955
3.187710
14.916556
34⋅7-2
81/49
870.168191
A57,7
41
876.181517
6.013327
28.138735
INCONSISTENT
40
854.811236
-15.356954
-71.861265
3-1⋅51
5/3
884.358713
M65
41
876.181517
-8.177196
-38.264334
CONSISTENT
41
876.181517
-8.177196
-38.264334
35⋅11-1⋅13-1
243/143
917.929400
A611,13
43
918.922079
0.992679
4.645137
CONSISTENT
43
918.922079
0.992679
4.645137
3-4⋅111⋅131
143/81
984.025601
d711,13
46
983.032922
-0.992679
-4.645137
CONSISTENT
46
983.032922
-0.992679
-4.645137
32⋅5-1
9/5
1017.596288
m75
48
1025.773484
8.177196
38.264334
CONSISTENT
48
1025.773484
8.177196
38.264334
3-3⋅72
49/27
1031.786810
d87,7
48
1025.773484
-6.013327
-28.138735
INCONSISTENT
49
1047.143765
15.356954
71.861265
7-1⋅131
13/7
1071.701755
m7137
50
1068.514045
-3.187710
-14.916556
CONSISTENT
50
1068.514045
-3.187710
-14.916556
3-2⋅171
17/9
1101.045408
d817
52
1111.254607
10.209199
47.772884
CONSISTENT
52
1111.254607
10.209199
47.772884
31⋅71⋅11-1
21/11
1119.462965
P8711
52
1111.254607
-8.208358
-38.410154
INCONSISTENT
53
1132.624888
13.161923
61.589846
35⋅5-3
243/125
1150.833863
d85,5,5
54
1153.995169
3.161306
14.793003
INCONSISTENT
55
1175.365450
24.531587
114.793003
35⋅11-2
243/121
1207.139120
cA111,11
56
1196.735731
-10.403389
-48.681572
INCONSISTENT
57
1218.106012
10.966892
51.318428
3-3⋅51⋅111
55/27
1231.766654
P85,11
58
1239.476293
7.709639
36.076452
INCONSISTENT
57
1218.106012
-13.660642
-63.923548
33⋅13-1
27/13
1265.337341
cA113
59
1260.846574
-4.490767
-21.014077
CONSISTENT
59
1260.846574
-4.490767
-21.014077
3-4⋅132
169/81
1273.235320
cd213,13
60
1282.216855
8.981534
42.028153
CONSISTENT
60
1282.216855
8.981534
42.028153
3-2⋅191
19/9
1293.603014
cm219
61
1303.587135
9.984121
46.719653
CONSISTENT
61
1303.587135
9.984121
46.719653
31⋅51⋅7-1
15/7
1319.442808
cA157
62
1324.957416
5.514608
25.805033
INCONSISTENT
61
1303.587135
-15.855673
-74.194967
3-4⋅52⋅71
175/81
1333.633331
cM25,5,7
62
1324.957416
-8.675914
-40.598036
CONSISTENT
62
1324.957416
-8.675914
-40.598036
5-1⋅111
11/5
1365.004228
cm2115
64
1367.697978
2.693750
12.605120
CONSISTENT
64
1367.697978
2.693750
12.605120
34⋅5-1⋅7-1
81/35
1452.680383
cM25,7
68
1453.179102
0.498719
2.333702
CONSISTENT
68
1453.179102
0.498719
2.333702
3-1⋅71
7/3
1466.870906
cm37
69
1474.549383
7.678477
35.930632
CONSISTENT
69
1474.549383
7.678477
35.930632
3-3⋅51⋅131
65/27
1520.976373
cm35,13
71
1517.289945
-3.686429
-17.250258
CONSISTENT
71
1517.289945
-3.686429
-17.250258
33⋅11-1
27/11
1554.547060
cM311
73
1560.030506
5.483446
25.659214
CONSISTENT
73
1560.030506
5.483446
25.659214
32⋅5-2⋅71
63/25
1600.108480
cd475,5
75
1602.771068
2.662588
12.459301
INCONSISTENT
76
1624.141349
24.032869
112.459301
31⋅111⋅13-1
33/13
1612.745281
cM31113
75
1602.771068
-9.974213
-46.673291
CONSISTENT
75
1602.771068
-9.974213
-46.673291
3-2⋅231
23/9
1624.364346
cM323
76
1624.141349
-0.222996
-1.043489
CONSISTENT
76
1624.141349
-0.222996
-1.043489
5-1⋅131
13/5
1654.213948
cd4135
77
1645.511630
-8.702318
-40.721589
INCONSISTENT
78
1666.881911
12.667963
59.278411
34⋅31-1
81/31
1662.784431
cP431
78
1666.881911
4.097480
19.173730
CONSISTENT
78
1666.881911
4.097480
19.173730
35⋅7-1⋅13-1
243/91
1700.421436
cA37,13
80
1709.622473
9.201037
43.055291
INCONSISTENT
79
1688.252192
-12.169244
-56.944709
33⋅51⋅7-2
135/49
1754.526904
cA357,7
82
1752.363035
-2.163869
-10.125599
INCONSISTENT
81
1730.992754
-23.534150
-110.125599
3-2⋅52
25/9
1768.717426
cA45,5
83
1773.733315
5.015889
23.471331
INCONSISTENT
82
1752.363035
-16.354391
-76.528669
34⋅29-1
81/29
1778.242809
cA429
83
1773.733315
-4.509494
-21.101706
CONSISTENT
83
1773.733315
-4.509494
-21.101706
3-3⋅71⋅111
77/27
1814.278846
cd57,11
85
1816.473877
2.195031
10.271419
CONSISTENT
85
1816.473877
2.195031
10.271419
31
3/1
1901.955001
cP5
89
1901.955001
0
0
CONSISTENT
89
1901.955001
0
0


Main article: JI intervals approximated by various scales