User:Contribution/JI intervals approximated by 84edt

From Xenharmonic Wiki
Jump to navigation Jump to search
This page is nominated for deletion.
Reason: These ratios are not relevant.
One of the operators will take care of it shortly.

84edt divides the tritave in 84 equal steps and the octave in 52.998099 equal steps of 22.642321 cents each. Its 31-limit patent val is <53 84 123 149 183 196 217 225 240 257 263|.

Factorization Ratio Value (¢) FJS Nearest
degree
Value (¢) Error (¢) Error (%) Consistency Consistent
degree
Value (¢) Error (¢) Error (%)
1/1
0
P1
0
0
0
0
CONSISTENT
0
0
0
0
3-5⋅51⋅72
245/243
14.190522
m25,7,7
1
22.642321
8.451799
37.327440
CONSISTENT
1
22.642321
8.451799
37.327440
34⋅7-1⋅11-1
81/77
87.676155
A17,11
4
90.569286
2.893131
12.777538
CONSISTENT
4
90.569286
2.893131
12.777538
3-3⋅291
29/27
123.712192
m229
5
113.211607
-10.500584
-46.375918
CONSISTENT
5
113.211607
-10.500584
-46.375918
33⋅5-2
27/25
133.237575
m25,5
6
135.853929
2.616354
11.555148
CONSISTENT
6
135.853929
2.616354
11.555148
3-2⋅5-1⋅72
49/45
147.428097
d37,75
7
158.496250
11.068153
48.882588
CONSISTENT
7
158.496250
11.068153
48.882588
3-4⋅71⋅131
91/81
201.533565
d37,13
9
203.780893
2.247328
9.925343
CONSISTENT
9
203.780893
2.247328
9.925343
3-3⋅311
31/27
239.170570
M231
11
249.065536
9.894966
43.701199
CONSISTENT
11
249.065536
9.894966
43.701199
31⋅51⋅13-1
15/13
247.741053
A2513
11
249.065536
1.324483
5.849590
CONSISTENT
11
249.065536
1.324483
5.849590
33⋅23-1
27/23
277.590655
m323
12
271.707857
-5.882798
-25.981426
CONSISTENT
12
271.707857
-5.882798
-25.981426
11-1⋅131
13/11
289.209719
m31311
13
294.350179
5.140459
22.702881
CONSISTENT
13
294.350179
5.140459
22.702881
3-1⋅52⋅7-1
25/21
301.846520
A25,57
13
294.350179
-7.496342
-33.107655
CONSISTENT
13
294.350179
-7.496342
-33.107655
3-2⋅111
11/9
347.407941
m311
15
339.634822
-7.773119
-34.330045
CONSISTENT
15
339.634822
-7.773119
-34.330045
34⋅5-1⋅13-1
81/65
380.978628
M35,13
17
384.919464
3.940837
17.404738
CONSISTENT
17
384.919464
3.940837
17.404738
32⋅7-1
9/7
435.084095
M37
19
430.204107
-4.879988
-21.552507
CONSISTENT
19
430.204107
-4.879988
-21.552507
3-3⋅51⋅71
35/27
449.274618
P45,7
20
452.846429
3.571811
15.774933
CONSISTENT
20
452.846429
3.571811
15.774933
31⋅51⋅11-1
15/11
536.950772
A4511
24
543.415715
6.464942
28.552471
CONSISTENT
24
543.415715
6.464942
28.552471
35⋅5-2⋅7-1
243/175
568.321670
P45,5,7
25
566.058036
-2.263634
-9.997359
CONSISTENT
25
566.058036
-2.263634
-9.997359
5-1⋅71
7/5
582.512193
d575
26
588.700357
6.188165
27.330081
CONSISTENT
26
588.700357
6.188165
27.330081
3-5⋅73
343/243
596.702715
d67,7,7
26
588.700357
-8.002358
-35.342479
INCONSISTENT
27
611.342679
14.639964
64.657521
33⋅19-1
27/19
608.351986
A419
27
611.342679
2.990692
13.208418
CONSISTENT
27
611.342679
2.990692
13.208418
35⋅13-2
243/169
628.719681
AA413,13
28
633.985000
5.265320
23.254327
CONSISTENT
28
633.985000
5.265320
23.254327
3-2⋅131
13/9
636.617660
d513
28
633.985000
-2.632660
-11.627164
CONSISTENT
28
633.985000
-2.632660
-11.627164
34⋅5-1⋅11-1
81/55
670.188347
P55,11
30
679.269643
9.081296
40.107619
CONSISTENT
30
679.269643
9.081296
40.107619
3-4⋅112
121/81
694.815881
d511,11
31
701.911965
7.096083
31.339911
INCONSISTENT
30
679.269643
-15.546238
-68.660089
3-4⋅53
125/81
751.121138
A55,5,5
33
747.196607
-3.924531
-17.332722
CONSISTENT
33
747.196607
-3.924531
-17.332722
7-1⋅111
11/7
782.492036
P5117
35
792.481250
9.989214
44.117448
INCONSISTENT
34
769.838929
-12.653107
-55.882552
33⋅17-1
27/17
800.909593
A517
35
792.481250
-8.428343
-37.223845
CONSISTENT
35
792.481250
-8.428343
-37.223845
31⋅71⋅13-1
21/13
830.253246
M6713
37
837.765893
7.512648
33.179671
CONSISTENT
37
837.765893
7.512648
33.179671
34⋅7-2
81/49
870.168191
A57,7
38
860.408215
-9.759976
-43.105014
CONSISTENT
38
860.408215
-9.759976
-43.105014
3-1⋅51
5/3
884.358713
M65
39
883.050536
-1.308177
-5.777574
CONSISTENT
39
883.050536
-1.308177
-5.777574
35⋅11-1⋅13-1
243/143
917.929400
A611,13
41
928.335179
10.405779
45.957208
CONSISTENT
41
928.335179
10.405779
45.957208
3-4⋅111⋅131
143/81
984.025601
d711,13
43
973.619822
-10.405779
-45.957208
CONSISTENT
43
973.619822
-10.405779
-45.957208
32⋅5-1
9/5
1017.596288
m75
45
1018.904465
1.308177
5.777574
CONSISTENT
45
1018.904465
1.308177
5.777574
3-3⋅72
49/27
1031.786810
d87,7
46
1041.546786
9.759976
43.105014
CONSISTENT
46
1041.546786
9.759976
43.105014
7-1⋅131
13/7
1071.701755
m7137
47
1064.189108
-7.512648
-33.179671
CONSISTENT
47
1064.189108
-7.512648
-33.179671
3-2⋅171
17/9
1101.045408
d817
49
1109.473751
8.428343
37.223845
CONSISTENT
49
1109.473751
8.428343
37.223845
31⋅71⋅11-1
21/11
1119.462965
P8711
49
1109.473751
-9.989214
-44.117448
INCONSISTENT
50
1132.116072
12.653107
55.882552
35⋅5-3
243/125
1150.833863
d85,5,5
51
1154.758393
3.924531
17.332722
CONSISTENT
51
1154.758393
3.924531
17.332722
35⋅11-2
243/121
1207.139120
cA111,11
53
1200.043036
-7.096083
-31.339911
INCONSISTENT
54
1222.685358
15.546238
68.660089
3-3⋅51⋅111
55/27
1231.766654
P85,11
54
1222.685358
-9.081296
-40.107619
CONSISTENT
54
1222.685358
-9.081296
-40.107619
33⋅13-1
27/13
1265.337341
cA113
56
1267.970001
2.632660
11.627164
CONSISTENT
56
1267.970001
2.632660
11.627164
3-4⋅132
169/81
1273.235320
cd213,13
56
1267.970001
-5.265320
-23.254327
CONSISTENT
56
1267.970001
-5.265320
-23.254327
3-2⋅191
19/9
1293.603014
cm219
57
1290.612322
-2.990692
-13.208418
CONSISTENT
57
1290.612322
-2.990692
-13.208418
31⋅51⋅7-1
15/7
1319.442808
cA157
58
1313.254643
-6.188165
-27.330081
CONSISTENT
58
1313.254643
-6.188165
-27.330081
3-4⋅52⋅71
175/81
1333.633331
cM25,5,7
59
1335.896965
2.263634
9.997359
CONSISTENT
59
1335.896965
2.263634
9.997359
5-1⋅111
11/5
1365.004228
cm2115
60
1358.539286
-6.464942
-28.552471
CONSISTENT
60
1358.539286
-6.464942
-28.552471
34⋅5-1⋅7-1
81/35
1452.680383
cM25,7
64
1449.108572
-3.571811
-15.774933
CONSISTENT
64
1449.108572
-3.571811
-15.774933
3-1⋅71
7/3
1466.870906
cm37
65
1471.750894
4.879988
21.552507
CONSISTENT
65
1471.750894
4.879988
21.552507
3-3⋅51⋅131
65/27
1520.976373
cm35,13
67
1517.035536
-3.940837
-17.404738
CONSISTENT
67
1517.035536
-3.940837
-17.404738
33⋅11-1
27/11
1554.547060
cM311
69
1562.320179
7.773119
34.330045
CONSISTENT
69
1562.320179
7.773119
34.330045
32⋅5-2⋅71
63/25
1600.108480
cd475,5
71
1607.604822
7.496342
33.107655
CONSISTENT
71
1607.604822
7.496342
33.107655
31⋅111⋅13-1
33/13
1612.745281
cM31113
71
1607.604822
-5.140459
-22.702881
CONSISTENT
71
1607.604822
-5.140459
-22.702881
3-2⋅231
23/9
1624.364346
cM323
72
1630.247144
5.882798
25.981426
CONSISTENT
72
1630.247144
5.882798
25.981426
5-1⋅131
13/5
1654.213948
cd4135
73
1652.889465
-1.324483
-5.849590
CONSISTENT
73
1652.889465
-1.324483
-5.849590
34⋅31-1
81/31
1662.784431
cP431
73
1652.889465
-9.894966
-43.701199
CONSISTENT
73
1652.889465
-9.894966
-43.701199
35⋅7-1⋅13-1
243/91
1700.421436
cA37,13
75
1698.174108
-2.247328
-9.925343
CONSISTENT
75
1698.174108
-2.247328
-9.925343
33⋅51⋅7-2
135/49
1754.526904
cA357,7
77
1743.458751
-11.068153
-48.882588
CONSISTENT
77
1743.458751
-11.068153
-48.882588
3-2⋅52
25/9
1768.717426
cA45,5
78
1766.101072
-2.616354
-11.555148
CONSISTENT
78
1766.101072
-2.616354
-11.555148
34⋅29-1
81/29
1778.242809
cA429
79
1788.743394
10.500584
46.375918
CONSISTENT
79
1788.743394
10.500584
46.375918
3-3⋅71⋅111
77/27
1814.278846
cd57,11
80
1811.385715
-2.893131
-12.777538
CONSISTENT
80
1811.385715
-2.893131
-12.777538
31
3/1
1901.955001
cP5
84
1901.955001
0
0
CONSISTENT
84
1901.955001
0
0


Main article: JI intervals approximated by various scales