User:Contribution/JI intervals approximated by 76edt

From Xenharmonic Wiki
Jump to navigation Jump to search
This page is nominated for deletion.
Reason: These ratios are not relevant.
One of the operators will take care of it shortly.

76edt divides the tritave in 76 equal steps and the octave in 47.950661 equal steps of 25.025724 cents each. Its 31-limit patent val is <48 76 111 135 166 177 196 204 217 233 238|.

Factorization Ratio Value (¢) FJS Nearest
degree
Value (¢) Error (¢) Error (%) Consistency Consistent
degree
Value (¢) Error (¢) Error (%)
1/1
0
P1
0
0
0
0
CONSISTENT
0
0
0
0
3-5⋅51⋅72
245/243
14.190522
m25,7,7
1
25.025724
10.835201
43.296255
CONSISTENT
1
25.025724
10.835201
43.296255
34⋅7-1⋅11-1
81/77
87.676155
A17,11
4
100.102895
12.426740
49.655867
INCONSISTENT
3
75.077171
-12.598984
-50.344133
3-3⋅291
29/27
123.712192
m229
5
125.128618
1.416427
5.659884
CONSISTENT
5
125.128618
1.416427
5.659884
33⋅5-2
27/25
133.237575
m25,5
5
125.128618
-8.108956
-32.402485
INCONSISTENT
6
150.154342
16.916767
67.597515
3-2⋅5-1⋅72
49/45
147.428097
d37,75
6
150.154342
2.726245
10.893770
INCONSISTENT
7
175.180066
27.751969
110.893770
3-4⋅71⋅131
91/81
201.533565
d37,13
8
200.205790
-1.327775
-5.305642
CONSISTENT
8
200.205790
-1.327775
-5.305642
3-3⋅311
31/27
239.170570
M231
10
250.257237
11.086667
44.301085
CONSISTENT
10
250.257237
11.086667
44.301085
31⋅51⋅13-1
15/13
247.741053
A2513
10
250.257237
2.516184
10.054391
CONSISTENT
10
250.257237
2.516184
10.054391
33⋅23-1
27/23
277.590655
m323
11
275.282961
-2.307695
-9.221290
CONSISTENT
11
275.282961
-2.307695
-9.221290
11-1⋅131
13/11
289.209719
m31311
12
300.308684
11.098965
44.350226
INCONSISTENT
11
275.282961
-13.926759
-55.649774
3-1⋅52⋅7-1
25/21
301.846520
A25,57
12
300.308684
-1.537836
-6.145021
INCONSISTENT
11
275.282961
-26.563560
-106.145021
3-2⋅111
11/9
347.407941
m311
14
350.360132
2.952191
11.796626
CONSISTENT
14
350.360132
2.952191
11.796626
34⋅5-1⋅13-1
81/65
380.978628
M35,13
15
375.385855
-5.592772
-22.348095
INCONSISTENT
16
400.411579
19.432951
77.651905
32⋅7-1
9/7
435.084095
M37
17
425.437303
-9.646792
-38.547506
CONSISTENT
17
425.437303
-9.646792
-38.547506
3-3⋅51⋅71
35/27
449.274618
P45,7
18
450.463027
1.188409
4.748749
CONSISTENT
18
450.463027
1.188409
4.748749
31⋅51⋅11-1
15/11
536.950772
A4511
21
525.540198
-11.410575
-45.595384
CONSISTENT
21
525.540198
-11.410575
-45.595384
35⋅5-2⋅7-1
243/175
568.321670
P45,5,7
23
575.591645
7.269975
29.050009
CONSISTENT
23
575.591645
7.269975
29.050009
5-1⋅71
7/5
582.512193
d575
23
575.591645
-6.920548
-27.653736
INCONSISTENT
24
600.617369
18.105176
72.346264
3-5⋅73
343/243
596.702715
d67,7,7
24
600.617369
3.914654
15.642519
INCONSISTENT
25
625.643092
28.940377
115.642519
33⋅19-1
27/19
608.351986
A419
24
600.617369
-7.734618
-30.906670
CONSISTENT
24
600.617369
-7.734618
-30.906670
35⋅13-2
243/169
628.719681
AA413,13
25
625.643092
-3.076588
-12.293704
INCONSISTENT
26
650.668816
21.949135
87.706296
3-2⋅131
13/9
636.617660
d513
25
625.643092
-10.974568
-43.853148
CONSISTENT
25
625.643092
-10.974568
-43.853148
34⋅5-1⋅11-1
81/55
670.188347
P55,11
27
675.694540
5.506193
22.002131
CONSISTENT
27
675.694540
5.506193
22.002131
3-4⋅112
121/81
694.815881
d511,11
28
700.720263
5.904382
23.593253
CONSISTENT
28
700.720263
5.904382
23.593253
3-4⋅53
125/81
751.121138
A55,5,5
30
750.771711
-0.349427
-1.396272
INCONSISTENT
29
725.745987
-25.375151
-101.396272
7-1⋅111
11/7
782.492036
P5117
31
775.797435
-6.694601
-26.750880
CONSISTENT
31
775.797435
-6.694601
-26.750880
33⋅17-1
27/17
800.909593
A517
32
800.823158
-0.086435
-0.345384
CONSISTENT
32
800.823158
-0.086435
-0.345384
31⋅71⋅13-1
21/13
830.253246
M6713
33
825.848882
-4.404364
-17.599346
INCONSISTENT
34
850.874606
20.621360
82.400654
34⋅7-2
81/49
870.168191
A57,7
35
875.900329
5.732139
22.904987
INCONSISTENT
34
850.874606
-19.293585
-77.095013
3-1⋅51
5/3
884.358713
M65
35
875.900329
-8.458384
-33.798757
CONSISTENT
35
875.900329
-8.458384
-33.798757
35⋅11-1⋅13-1
243/143
917.929400
A611,13
37
925.951777
8.022377
32.056522
CONSISTENT
37
925.951777
8.022377
32.056522
3-4⋅111⋅131
143/81
984.025601
d711,13
39
976.003224
-8.022377
-32.056522
CONSISTENT
39
976.003224
-8.022377
-32.056522
32⋅5-1
9/5
1017.596288
m75
41
1026.054672
8.458384
33.798757
CONSISTENT
41
1026.054672
8.458384
33.798757
3-3⋅72
49/27
1031.786810
d87,7
41
1026.054672
-5.732139
-22.904987
INCONSISTENT
42
1051.080395
19.293585
77.095013
7-1⋅131
13/7
1071.701755
m7137
43
1076.106119
4.404364
17.599346
INCONSISTENT
42
1051.080395
-20.621360
-82.400654
3-2⋅171
17/9
1101.045408
d817
44
1101.131843
0.086435
0.345384
CONSISTENT
44
1101.131843
0.086435
0.345384
31⋅71⋅11-1
21/11
1119.462965
P8711
45
1126.157566
6.694601
26.750880
CONSISTENT
45
1126.157566
6.694601
26.750880
35⋅5-3
243/125
1150.833863
d85,5,5
46
1151.183290
0.349427
1.396272
INCONSISTENT
47
1176.209014
25.375151
101.396272
35⋅11-2
243/121
1207.139120
cA111,11
48
1201.234737
-5.904382
-23.593253
CONSISTENT
48
1201.234737
-5.904382
-23.593253
3-3⋅51⋅111
55/27
1231.766654
P85,11
49
1226.260461
-5.506193
-22.002131
CONSISTENT
49
1226.260461
-5.506193
-22.002131
33⋅13-1
27/13
1265.337341
cA113
51
1276.311908
10.974568
43.853148
CONSISTENT
51
1276.311908
10.974568
43.853148
3-4⋅132
169/81
1273.235320
cd213,13
51
1276.311908
3.076588
12.293704
INCONSISTENT
50
1251.286185
-21.949135
-87.706296
3-2⋅191
19/9
1293.603014
cm219
52
1301.337632
7.734618
30.906670
CONSISTENT
52
1301.337632
7.734618
30.906670
31⋅51⋅7-1
15/7
1319.442808
cA157
53
1326.363356
6.920548
27.653736
INCONSISTENT
52
1301.337632
-18.105176
-72.346264
3-4⋅52⋅71
175/81
1333.633331
cM25,5,7
53
1326.363356
-7.269975
-29.050009
CONSISTENT
53
1326.363356
-7.269975
-29.050009
5-1⋅111
11/5
1365.004228
cm2115
55
1376.414803
11.410575
45.595384
CONSISTENT
55
1376.414803
11.410575
45.595384
34⋅5-1⋅7-1
81/35
1452.680383
cM25,7
58
1451.491974
-1.188409
-4.748749
CONSISTENT
58
1451.491974
-1.188409
-4.748749
3-1⋅71
7/3
1466.870906
cm37
59
1476.517698
9.646792
38.547506
CONSISTENT
59
1476.517698
9.646792
38.547506
3-3⋅51⋅131
65/27
1520.976373
cm35,13
61
1526.569145
5.592772
22.348095
INCONSISTENT
60
1501.543422
-19.432951
-77.651905
33⋅11-1
27/11
1554.547060
cM311
62
1551.594869
-2.952191
-11.796626
CONSISTENT
62
1551.594869
-2.952191
-11.796626
32⋅5-2⋅71
63/25
1600.108480
cd475,5
64
1601.646317
1.537836
6.145021
INCONSISTENT
65
1626.672040
26.563560
106.145021
31⋅111⋅13-1
33/13
1612.745281
cM31113
64
1601.646317
-11.098965
-44.350226
INCONSISTENT
65
1626.672040
13.926759
55.649774
3-2⋅231
23/9
1624.364346
cM323
65
1626.672040
2.307695
9.221290
CONSISTENT
65
1626.672040
2.307695
9.221290
5-1⋅131
13/5
1654.213948
cd4135
66
1651.697764
-2.516184
-10.054391
CONSISTENT
66
1651.697764
-2.516184
-10.054391
34⋅31-1
81/31
1662.784431
cP431
66
1651.697764
-11.086667
-44.301085
CONSISTENT
66
1651.697764
-11.086667
-44.301085
35⋅7-1⋅13-1
243/91
1700.421436
cA37,13
68
1701.749211
1.327775
5.305642
CONSISTENT
68
1701.749211
1.327775
5.305642
33⋅51⋅7-2
135/49
1754.526904
cA357,7
70
1751.800659
-2.726245
-10.893770
INCONSISTENT
69
1726.774935
-27.751969
-110.893770
3-2⋅52
25/9
1768.717426
cA45,5
71
1776.826382
8.108956
32.402485
INCONSISTENT
70
1751.800659
-16.916767
-67.597515
34⋅29-1
81/29
1778.242809
cA429
71
1776.826382
-1.416427
-5.659884
CONSISTENT
71
1776.826382
-1.416427
-5.659884
3-3⋅71⋅111
77/27
1814.278846
cd57,11
72
1801.852106
-12.426740
-49.655867
INCONSISTENT
73
1826.877830
12.598984
50.344133
31
3/1
1901.955001
cP5
76
1901.955001
0
0
CONSISTENT
76
1901.955001
0
0


Main article: JI intervals approximated by various scales