User:Contribution/JI intervals approximated by 69edt

From Xenharmonic Wiki
Jump to navigation Jump to search
This page is nominated for deletion.
Reason: These ratios are not relevant.
One of the operators will take care of it shortly.

69edt divides the tritave in 69 equal steps and the octave in 43.534153 equal steps of 27.564565 cents each. Its 31-limit patent val is <44 69 101 122 151 161 178 185 197 211 216|.

Factorization Ratio Value (¢) FJS Nearest
degree
Value (¢) Error (¢) Error (%) Consistency Consistent
degree
Value (¢) Error (¢) Error (%)
1/1
0
P1
0
0
0
0
CONSISTENT
0
0
0
0
3-5⋅51⋅72
245/243
14.190522
m25,7,7
1
27.564565
13.374043
48.518969
INCONSISTENT
0
0
-14.190522
-51.481031
34⋅7-1⋅11-1
81/77
87.676155
A17,11
3
82.693696
-4.982459
-18.075594
CONSISTENT
3
82.693696
-4.982459
-18.075594
3-3⋅291
29/27
123.712192
m229
4
110.258261
-13.453931
-48.808790
CONSISTENT
4
110.258261
-13.453931
-48.808790
33⋅5-2
27/25
133.237575
m25,5
5
137.822826
4.585251
16.634586
CONSISTENT
5
137.822826
4.585251
16.634586
3-2⋅5-1⋅72
49/45
147.428097
d37,75
5
137.822826
-9.605271
-34.846445
CONSISTENT
5
137.822826
-9.605271
-34.846445
3-4⋅71⋅131
91/81
201.533565
d37,13
7
192.951957
-8.581608
-31.132754
CONSISTENT
7
192.951957
-8.581608
-31.132754
3-3⋅311
31/27
239.170570
M231
9
248.081087
8.910517
32.325985
CONSISTENT
9
248.081087
8.910517
32.325985
31⋅51⋅13-1
15/13
247.741053
A2513
9
248.081087
0.340034
1.233591
CONSISTENT
9
248.081087
0.340034
1.233591
33⋅23-1
27/23
277.590655
m323
10
275.645652
-1.945003
-7.056172
CONSISTENT
10
275.645652
-1.945003
-7.056172
11-1⋅131
13/11
289.209719
m31311
10
275.645652
-13.564067
-49.208348
CONSISTENT
10
275.645652
-13.564067
-49.208348
3-1⋅52⋅7-1
25/21
301.846520
A25,57
11
303.210218
1.363697
4.947283
CONSISTENT
11
303.210218
1.363697
4.947283
3-2⋅111
11/9
347.407941
m311
13
358.339348
10.931407
39.657463
CONSISTENT
13
358.339348
10.931407
39.657463
34⋅5-1⋅13-1
81/65
380.978628
M35,13
14
385.903913
4.925285
17.868177
CONSISTENT
14
385.903913
4.925285
17.868177
32⋅7-1
9/7
435.084095
M37
16
441.033044
5.948948
21.581869
CONSISTENT
16
441.033044
5.948948
21.581869
3-3⋅51⋅71
35/27
449.274618
P45,7
16
441.033044
-8.241574
-29.899162
CONSISTENT
16
441.033044
-8.241574
-29.899162
31⋅51⋅11-1
15/11
536.950772
A4511
19
523.726739
-13.224033
-47.974756
CONSISTENT
19
523.726739
-13.224033
-47.974756
35⋅5-2⋅7-1
243/175
568.321670
P45,5,7
21
578.855870
10.534200
38.216455
CONSISTENT
21
578.855870
10.534200
38.216455
5-1⋅71
7/5
582.512193
d575
21
578.855870
-3.656323
-13.264576
CONSISTENT
21
578.855870
-3.656323
-13.264576
3-5⋅73
343/243
596.702715
d67,7,7
22
606.420435
9.717720
35.254392
INCONSISTENT
21
578.855870
-17.846845
-64.745608
33⋅19-1
27/19
608.351986
A419
22
606.420435
-1.931551
-7.007371
CONSISTENT
22
606.420435
-1.931551
-7.007371
35⋅13-2
243/169
628.719681
AA413,13
23
633.985000
5.265320
19.101769
CONSISTENT
23
633.985000
5.265320
19.101769
3-2⋅131
13/9
636.617660
d513
23
633.985000
-2.632660
-9.550884
CONSISTENT
23
633.985000
-2.632660
-9.550884
34⋅5-1⋅11-1
81/55
670.188347
P55,11
24
661.549566
-8.638782
-31.340170
CONSISTENT
24
661.549566
-8.638782
-31.340170
3-4⋅112
121/81
694.815881
d511,11
25
689.114131
-5.701751
-20.685073
INCONSISTENT
26
716.678696
21.862815
79.314927
3-4⋅53
125/81
751.121138
A55,5,5
27
744.243261
-6.877877
-24.951879
CONSISTENT
27
744.243261
-6.877877
-24.951879
7-1⋅111
11/7
782.492036
P5117
28
771.807826
-10.684209
-38.760667
INCONSISTENT
29
799.372392
16.880356
61.239333
33⋅17-1
27/17
800.909593
A517
29
799.372392
-1.537201
-5.576730
CONSISTENT
29
799.372392
-1.537201
-5.576730
31⋅71⋅13-1
21/13
830.253246
M6713
30
826.936957
-3.316289
-12.030985
CONSISTENT
30
826.936957
-3.316289
-12.030985
34⋅7-2
81/49
870.168191
A57,7
32
882.066087
11.897897
43.163738
CONSISTENT
32
882.066087
11.897897
43.163738
3-1⋅51
5/3
884.358713
M65
32
882.066087
-2.292626
-8.317293
CONSISTENT
32
882.066087
-2.292626
-8.317293
35⋅11-1⋅13-1
243/143
917.929400
A611,13
33
909.630653
-8.298748
-30.106579
CONSISTENT
33
909.630653
-8.298748
-30.106579
3-4⋅111⋅131
143/81
984.025601
d711,13
36
992.324348
8.298748
30.106579
CONSISTENT
36
992.324348
8.298748
30.106579
32⋅5-1
9/5
1017.596288
m75
37
1019.888914
2.292626
8.317293
CONSISTENT
37
1019.888914
2.292626
8.317293
3-3⋅72
49/27
1031.786810
d87,7
37
1019.888914
-11.897897
-43.163738
CONSISTENT
37
1019.888914
-11.897897
-43.163738
7-1⋅131
13/7
1071.701755
m7137
39
1075.018044
3.316289
12.030985
CONSISTENT
39
1075.018044
3.316289
12.030985
3-2⋅171
17/9
1101.045408
d817
40
1102.582609
1.537201
5.576730
CONSISTENT
40
1102.582609
1.537201
5.576730
31⋅71⋅11-1
21/11
1119.462965
P8711
41
1130.147174
10.684209
38.760667
INCONSISTENT
40
1102.582609
-16.880356
-61.239333
35⋅5-3
243/125
1150.833863
d85,5,5
42
1157.711740
6.877877
24.951879
CONSISTENT
42
1157.711740
6.877877
24.951879
35⋅11-2
243/121
1207.139120
cA111,11
44
1212.840870
5.701751
20.685073
INCONSISTENT
43
1185.276305
-21.862815
-79.314927
3-3⋅51⋅111
55/27
1231.766654
P85,11
45
1240.405435
8.638782
31.340170
CONSISTENT
45
1240.405435
8.638782
31.340170
33⋅13-1
27/13
1265.337341
cA113
46
1267.970001
2.632660
9.550884
CONSISTENT
46
1267.970001
2.632660
9.550884
3-4⋅132
169/81
1273.235320
cd213,13
46
1267.970001
-5.265320
-19.101769
CONSISTENT
46
1267.970001
-5.265320
-19.101769
3-2⋅191
19/9
1293.603014
cm219
47
1295.534566
1.931551
7.007371
CONSISTENT
47
1295.534566
1.931551
7.007371
31⋅51⋅7-1
15/7
1319.442808
cA157
48
1323.099131
3.656323
13.264576
CONSISTENT
48
1323.099131
3.656323
13.264576
3-4⋅52⋅71
175/81
1333.633331
cM25,5,7
48
1323.099131
-10.534200
-38.216455
CONSISTENT
48
1323.099131
-10.534200
-38.216455
5-1⋅111
11/5
1365.004228
cm2115
50
1378.228261
13.224033
47.974756
CONSISTENT
50
1378.228261
13.224033
47.974756
34⋅5-1⋅7-1
81/35
1452.680383
cM25,7
53
1460.921957
8.241574
29.899162
CONSISTENT
53
1460.921957
8.241574
29.899162
3-1⋅71
7/3
1466.870906
cm37
53
1460.921957
-5.948948
-21.581869
CONSISTENT
53
1460.921957
-5.948948
-21.581869
3-3⋅51⋅131
65/27
1520.976373
cm35,13
55
1516.051088
-4.925285
-17.868177
CONSISTENT
55
1516.051088
-4.925285
-17.868177
33⋅11-1
27/11
1554.547060
cM311
56
1543.615653
-10.931407
-39.657463
CONSISTENT
56
1543.615653
-10.931407
-39.657463
32⋅5-2⋅71
63/25
1600.108480
cd475,5
58
1598.744783
-1.363697
-4.947283
CONSISTENT
58
1598.744783
-1.363697
-4.947283
31⋅111⋅13-1
33/13
1612.745281
cM31113
59
1626.309349
13.564067
49.208348
CONSISTENT
59
1626.309349
13.564067
49.208348
3-2⋅231
23/9
1624.364346
cM323
59
1626.309349
1.945003
7.056172
CONSISTENT
59
1626.309349
1.945003
7.056172
5-1⋅131
13/5
1654.213948
cd4135
60
1653.873914
-0.340034
-1.233591
CONSISTENT
60
1653.873914
-0.340034
-1.233591
34⋅31-1
81/31
1662.784431
cP431
60
1653.873914
-8.910517
-32.325985
CONSISTENT
60
1653.873914
-8.910517
-32.325985
35⋅7-1⋅13-1
243/91
1700.421436
cA37,13
62
1709.003044
8.581608
31.132754
CONSISTENT
62
1709.003044
8.581608
31.132754
33⋅51⋅7-2
135/49
1754.526904
cA357,7
64
1764.132175
9.605271
34.846445
CONSISTENT
64
1764.132175
9.605271
34.846445
3-2⋅52
25/9
1768.717426
cA45,5
64
1764.132175
-4.585251
-16.634586
CONSISTENT
64
1764.132175
-4.585251
-16.634586
34⋅29-1
81/29
1778.242809
cA429
65
1791.696740
13.453931
48.808790
CONSISTENT
65
1791.696740
13.453931
48.808790
3-3⋅71⋅111
77/27
1814.278846
cd57,11
66
1819.261305
4.982459
18.075594
CONSISTENT
66
1819.261305
4.982459
18.075594
31
3/1
1901.955001
cP5
69
1901.955001
0
0
CONSISTENT
69
1901.955001
0
0


Main article: JI intervals approximated by various scales