User:Contribution/JI intervals approximated by 68edt

From Xenharmonic Wiki
Jump to navigation Jump to search
This page is nominated for deletion.
Reason: These ratios are not relevant.
One of the operators will take care of it shortly.

68edt divides the tritave in 68 equal steps and the octave in 42.903223 equal steps of 27.969926 cents each. Its 31-limit patent val is <43 68 100 120 148 159 175 182 194 208 213|.

Factorization Ratio Value (¢) FJS Nearest
degree
Value (¢) Error (¢) Error (%) Consistency Consistent
degree
Value (¢) Error (¢) Error (%)
1/1
0
P1
0
0
0
0
CONSISTENT
0
0
0
0
3-5⋅51⋅72
245/243
14.190522
m25,7,7
1
27.969926
13.779404
49.265071
INCONSISTENT
0
0
-14.190522
-50.734929
34⋅7-1⋅11-1
81/77
87.676155
A17,11
3
83.909779
-3.766375
-13.465803
INCONSISTENT
4
111.879706
24.203551
86.534197
3-3⋅291
29/27
123.712192
m229
4
111.879706
-11.832486
-42.304314
CONSISTENT
4
111.879706
-11.832486
-42.304314
33⋅5-2
27/25
133.237575
m25,5
5
139.849632
6.612058
23.639882
INCONSISTENT
4
111.879706
-21.357869
-76.360118
3-2⋅5-1⋅72
49/45
147.428097
d37,75
5
139.849632
-7.578465
-27.095048
INCONSISTENT
4
111.879706
-35.548391
-127.095048
3-4⋅71⋅131
91/81
201.533565
d37,13
7
195.789485
-5.744079
-20.536627
CONSISTENT
7
195.789485
-5.744079
-20.536627
3-3⋅311
31/27
239.170570
M231
9
251.729338
12.558768
44.900971
CONSISTENT
9
251.729338
12.558768
44.900971
31⋅51⋅13-1
15/13
247.741053
A2513
9
251.729338
3.988285
14.259192
CONSISTENT
9
251.729338
3.988285
14.259192
33⋅23-1
27/23
277.590655
m323
10
279.699265
2.108610
7.538845
CONSISTENT
10
279.699265
2.108610
7.538845
11-1⋅131
13/11
289.209719
m31311
10
279.699265
-9.510455
-34.002430
INCONSISTENT
11
307.669191
18.459472
65.997570
3-1⋅52⋅7-1
25/21
301.846520
A25,57
11
307.669191
5.822671
20.817613
INCONSISTENT
12
335.639118
33.792597
120.817613
3-2⋅111
11/9
347.407941
m311
12
335.639118
-11.768823
-42.076703
CONSISTENT
12
335.639118
-11.768823
-42.076703
34⋅5-1⋅13-1
81/65
380.978628
M35,13
14
391.578971
10.600343
37.899073
INCONSISTENT
13
363.609044
-17.369584
-62.100927
32⋅7-1
9/7
435.084095
M37
16
447.518824
12.434728
44.457494
CONSISTENT
16
447.518824
12.434728
44.457494
3-3⋅51⋅71
35/27
449.274618
P45,7
16
447.518824
-1.755794
-6.277435
CONSISTENT
16
447.518824
-1.755794
-6.277435
31⋅51⋅11-1
15/11
536.950772
A4511
19
531.428603
-5.522169
-19.743238
INCONSISTENT
20
559.398530
22.447757
80.256762
35⋅5-2⋅7-1
243/175
568.321670
P45,5,7
20
559.398530
-8.923140
-31.902624
CONSISTENT
20
559.398530
-8.923140
-31.902624
5-1⋅71
7/5
582.512193
d575
21
587.368456
4.856264
17.362447
INCONSISTENT
20
559.398530
-23.113663
-82.637553
3-5⋅73
343/243
596.702715
d67,7,7
21
587.368456
-9.334259
-33.372483
INCONSISTENT
20
559.398530
-37.304185
-133.372483
33⋅19-1
27/19
608.351986
A419
22
615.338383
6.986396
24.978243
CONSISTENT
22
615.338383
6.986396
24.978243
35⋅13-2
243/169
628.719681
AA413,13
22
615.338383
-13.381298
-47.841735
CONSISTENT
22
615.338383
-13.381298
-47.841735
3-2⋅131
13/9
636.617660
d513
23
643.308309
6.690649
23.920868
CONSISTENT
23
643.308309
6.690649
23.920868
34⋅5-1⋅11-1
81/55
670.188347
P55,11
24
671.278236
1.089888
3.896644
CONSISTENT
24
671.278236
1.089888
3.896644
3-4⋅112
121/81
694.815881
d511,11
25
699.248162
4.432281
15.846594
INCONSISTENT
24
671.278236
-23.537646
-84.153406
3-4⋅53
125/81
751.121138
A55,5,5
27
755.188015
4.066877
14.540177
INCONSISTENT
28
783.157942
32.036803
114.540177
7-1⋅111
11/7
782.492036
P5117
28
783.157942
0.665906
2.380792
CONSISTENT
28
783.157942
0.665906
2.380792
33⋅17-1
27/17
800.909593
A517
29
811.127868
10.218275
36.533078
CONSISTENT
29
811.127868
10.218275
36.533078
31⋅71⋅13-1
21/13
830.253246
M6713
30
839.097794
8.844549
31.621638
INCONSISTENT
29
811.127868
-19.125378
-68.378362
34⋅7-2
81/49
870.168191
A57,7
31
867.067721
-3.100470
-11.085011
INCONSISTENT
32
895.037647
24.869457
88.914989
3-1⋅51
5/3
884.358713
M65
32
895.037647
10.678934
38.180059
CONSISTENT
32
895.037647
10.678934
38.180059
35⋅11-1⋅13-1
243/143
917.929400
A611,13
33
923.007574
5.078174
18.155835
CONSISTENT
33
923.007574
5.078174
18.155835
3-4⋅111⋅131
143/81
984.025601
d711,13
35
978.947427
-5.078174
-18.155835
CONSISTENT
35
978.947427
-5.078174
-18.155835
32⋅5-1
9/5
1017.596288
m75
36
1006.917353
-10.678934
-38.180059
CONSISTENT
36
1006.917353
-10.678934
-38.180059
3-3⋅72
49/27
1031.786810
d87,7
37
1034.887280
3.100470
11.085011
INCONSISTENT
36
1006.917353
-24.869457
-88.914989
7-1⋅131
13/7
1071.701755
m7137
38
1062.857206
-8.844549
-31.621638
INCONSISTENT
39
1090.827133
19.125378
68.378362
3-2⋅171
17/9
1101.045408
d817
39
1090.827133
-10.218275
-36.533078
CONSISTENT
39
1090.827133
-10.218275
-36.533078
31⋅71⋅11-1
21/11
1119.462965
P8711
40
1118.797059
-0.665906
-2.380792
CONSISTENT
40
1118.797059
-0.665906
-2.380792
35⋅5-3
243/125
1150.833863
d85,5,5
41
1146.766986
-4.066877
-14.540177
INCONSISTENT
40
1118.797059
-32.036803
-114.540177
35⋅11-2
243/121
1207.139120
cA111,11
43
1202.706839
-4.432281
-15.846594
INCONSISTENT
44
1230.676765
23.537646
84.153406
3-3⋅51⋅111
55/27
1231.766654
P85,11
44
1230.676765
-1.089888
-3.896644
CONSISTENT
44
1230.676765
-1.089888
-3.896644
33⋅13-1
27/13
1265.337341
cA113
45
1258.646692
-6.690649
-23.920868
CONSISTENT
45
1258.646692
-6.690649
-23.920868
3-4⋅132
169/81
1273.235320
cd213,13
46
1286.616618
13.381298
47.841735
CONSISTENT
46
1286.616618
13.381298
47.841735
3-2⋅191
19/9
1293.603014
cm219
46
1286.616618
-6.986396
-24.978243
CONSISTENT
46
1286.616618
-6.986396
-24.978243
31⋅51⋅7-1
15/7
1319.442808
cA157
47
1314.586545
-4.856264
-17.362447
INCONSISTENT
48
1342.556471
23.113663
82.637553
3-4⋅52⋅71
175/81
1333.633331
cM25,5,7
48
1342.556471
8.923140
31.902624
CONSISTENT
48
1342.556471
8.923140
31.902624
5-1⋅111
11/5
1365.004228
cm2115
49
1370.526398
5.522169
19.743238
INCONSISTENT
48
1342.556471
-22.447757
-80.256762
34⋅5-1⋅7-1
81/35
1452.680383
cM25,7
52
1454.436177
1.755794
6.277435
CONSISTENT
52
1454.436177
1.755794
6.277435
3-1⋅71
7/3
1466.870906
cm37
52
1454.436177
-12.434728
-44.457494
CONSISTENT
52
1454.436177
-12.434728
-44.457494
3-3⋅51⋅131
65/27
1520.976373
cm35,13
54
1510.376030
-10.600343
-37.899073
INCONSISTENT
55
1538.345957
17.369584
62.100927
33⋅11-1
27/11
1554.547060
cM311
56
1566.315883
11.768823
42.076703
CONSISTENT
56
1566.315883
11.768823
42.076703
32⋅5-2⋅71
63/25
1600.108480
cd475,5
57
1594.285810
-5.822671
-20.817613
INCONSISTENT
56
1566.315883
-33.792597
-120.817613
31⋅111⋅13-1
33/13
1612.745281
cM31113
58
1622.255736
9.510455
34.002430
INCONSISTENT
57
1594.285810
-18.459472
-65.997570
3-2⋅231
23/9
1624.364346
cM323
58
1622.255736
-2.108610
-7.538845
CONSISTENT
58
1622.255736
-2.108610
-7.538845
5-1⋅131
13/5
1654.213948
cd4135
59
1650.225663
-3.988285
-14.259192
CONSISTENT
59
1650.225663
-3.988285
-14.259192
34⋅31-1
81/31
1662.784431
cP431
59
1650.225663
-12.558768
-44.900971
CONSISTENT
59
1650.225663
-12.558768
-44.900971
35⋅7-1⋅13-1
243/91
1700.421436
cA37,13
61
1706.165515
5.744079
20.536627
CONSISTENT
61
1706.165515
5.744079
20.536627
33⋅51⋅7-2
135/49
1754.526904
cA357,7
63
1762.105368
7.578465
27.095048
INCONSISTENT
64
1790.075295
35.548391
127.095048
3-2⋅52
25/9
1768.717426
cA45,5
63
1762.105368
-6.612058
-23.639882
INCONSISTENT
64
1790.075295
21.357869
76.360118
34⋅29-1
81/29
1778.242809
cA429
64
1790.075295
11.832486
42.304314
CONSISTENT
64
1790.075295
11.832486
42.304314
3-3⋅71⋅111
77/27
1814.278846
cd57,11
65
1818.045221
3.766375
13.465803
INCONSISTENT
64
1790.075295
-24.203551
-86.534197
31
3/1
1901.955001
cP5
68
1901.955001
0
0
CONSISTENT
68
1901.955001
0
0


Main article: JI intervals approximated by various scales