User:Contribution/JI intervals approximated by 67edt

From Xenharmonic Wiki
Jump to navigation Jump to search
This page is nominated for deletion.
Reason: These ratios are not relevant.
One of the operators will take care of it shortly.

67edt divides the tritave in 67 equal steps and the octave in 42.272293 equal steps of 28.387388 cents each. Its 31-limit patent val is <42 67 98 119 146 156 173 180 191 205 209|.

Factorization Ratio Value (¢) FJS Nearest
degree
Value (¢) Error (¢) Error (%) Consistency Consistent
degree
Value (¢) Error (¢) Error (%)
1/1
0
P1
0
0
0
0
CONSISTENT
0
0
0
0
3-5⋅51⋅72
245/243
14.190522
m25,7,7
0
0
-14.190522
-49.988828
INCONSISTENT
1
28.387388
14.196866
50.011172
34⋅7-1⋅11-1
81/77
87.676155
A17,11
3
85.162164
-2.513990
-8.856012
CONSISTENT
3
85.162164
-2.513990
-8.856012
3-3⋅291
29/27
123.712192
m229
4
113.549552
-10.162639
-35.799839
CONSISTENT
4
113.549552
-10.162639
-35.799839
33⋅5-2
27/25
133.237575
m25,5
5
141.936940
8.699365
30.645178
CONSISTENT
5
141.936940
8.699365
30.645178
3-2⋅5-1⋅72
49/45
147.428097
d37,75
5
141.936940
-5.491157
-19.343650
INCONSISTENT
6
170.324328
22.896231
80.656350
3-4⋅71⋅131
91/81
201.533565
d37,13
7
198.711717
-2.821848
-9.940500
CONSISTENT
7
198.711717
-2.821848
-9.940500
3-3⋅311
31/27
239.170570
M231
8
227.099105
-12.071465
-42.524044
CONSISTENT
8
227.099105
-12.071465
-42.524044
31⋅51⋅13-1
15/13
247.741053
A2513
9
255.486493
7.745440
27.284792
CONSISTENT
9
255.486493
7.745440
27.284792
33⋅23-1
27/23
277.590655
m323
10
283.873881
6.283225
22.133862
CONSISTENT
10
283.873881
6.283225
22.133862
11-1⋅131
13/11
289.209719
m31311
10
283.873881
-5.335839
-18.796512
CONSISTENT
10
283.873881
-5.335839
-18.796512
3-1⋅52⋅7-1
25/21
301.846520
A25,57
11
312.261269
10.414748
36.687942
INCONSISTENT
10
283.873881
-17.972640
-63.312058
3-2⋅111
11/9
347.407941
m311
12
340.648657
-6.759284
-23.810869
CONSISTENT
12
340.648657
-6.759284
-23.810869
34⋅5-1⋅13-1
81/65
380.978628
M35,13
13
369.036045
-11.942583
-42.070031
INCONSISTENT
14
397.423433
16.444805
57.929969
32⋅7-1
9/7
435.084095
M37
15
425.810821
-9.273274
-32.666881
CONSISTENT
15
425.810821
-9.273274
-32.666881
3-3⋅51⋅71
35/27
449.274618
P45,7
16
454.198209
4.923591
17.344292
CONSISTENT
16
454.198209
4.923591
17.344292
31⋅51⋅11-1
15/11
536.950772
A4511
19
539.360373
2.409601
8.488280
CONSISTENT
19
539.360373
2.409601
8.488280
35⋅5-2⋅7-1
243/175
568.321670
P45,5,7
20
567.747761
-0.573909
-2.021703
CONSISTENT
20
567.747761
-0.573909
-2.021703
5-1⋅71
7/5
582.512193
d575
21
596.135150
13.622957
47.989469
CONSISTENT
21
596.135150
13.622957
47.989469
3-5⋅73
343/243
596.702715
d67,7,7
21
596.135150
-0.567566
-1.999358
INCONSISTENT
22
624.522538
27.819823
98.000642
33⋅19-1
27/19
608.351986
A419
21
596.135150
-12.216837
-43.036143
CONSISTENT
21
596.135150
-12.216837
-43.036143
35⋅13-2
243/169
628.719681
AA413,13
22
624.522538
-4.197143
-14.785239
INCONSISTENT
23
652.909926
24.190245
85.214761
3-2⋅131
13/9
636.617660
d513
22
624.522538
-12.095122
-42.607380
CONSISTENT
22
624.522538
-12.095122
-42.607380
34⋅5-1⋅11-1
81/55
670.188347
P55,11
24
681.297314
11.108967
39.133458
CONSISTENT
24
681.297314
11.108967
39.133458
3-4⋅112
121/81
694.815881
d511,11
24
681.297314
-13.518568
-47.621738
CONSISTENT
24
681.297314
-13.518568
-47.621738
3-4⋅53
125/81
751.121138
A55,5,5
26
738.072090
-13.049048
-45.967766
CONSISTENT
26
738.072090
-13.049048
-45.967766
7-1⋅111
11/7
782.492036
P5117
28
794.846866
12.354830
43.522250
INCONSISTENT
27
766.459478
-16.032558
-56.477750
33⋅17-1
27/17
800.909593
A517
28
794.846866
-6.062727
-21.357115
CONSISTENT
28
794.846866
-6.062727
-21.357115
31⋅71⋅13-1
21/13
830.253246
M6713
29
823.234254
-7.018991
-24.725739
INCONSISTENT
30
851.621642
21.368397
75.274261
34⋅7-2
81/49
870.168191
A57,7
31
880.009030
9.840840
34.666239
INCONSISTENT
30
851.621642
-18.546548
-65.333761
3-1⋅51
5/3
884.358713
M65
31
880.009030
-4.349683
-15.322589
CONSISTENT
31
880.009030
-4.349683
-15.322589
35⋅11-1⋅13-1
243/143
917.929400
A611,13
32
908.396418
-9.532982
-33.581751
INCONSISTENT
33
936.783806
18.854406
66.418249
3-4⋅111⋅131
143/81
984.025601
d711,13
35
993.558583
9.532982
33.581751
INCONSISTENT
34
965.171194
-18.854406
-66.418249
32⋅5-1
9/5
1017.596288
m75
36
1021.945971
4.349683
15.322589
CONSISTENT
36
1021.945971
4.349683
15.322589
3-3⋅72
49/27
1031.786810
d87,7
36
1021.945971
-9.840840
-34.666239
INCONSISTENT
37
1050.333359
18.546548
65.333761
7-1⋅131
13/7
1071.701755
m7137
38
1078.720747
7.018991
24.725739
INCONSISTENT
37
1050.333359
-21.368397
-75.274261
3-2⋅171
17/9
1101.045408
d817
39
1107.108135
6.062727
21.357115
CONSISTENT
39
1107.108135
6.062727
21.357115
31⋅71⋅11-1
21/11
1119.462965
P8711
39
1107.108135
-12.354830
-43.522250
INCONSISTENT
40
1135.495523
16.032558
56.477750
35⋅5-3
243/125
1150.833863
d85,5,5
41
1163.882911
13.049048
45.967766
CONSISTENT
41
1163.882911
13.049048
45.967766
35⋅11-2
243/121
1207.139120
cA111,11
43
1220.657687
13.518568
47.621738
CONSISTENT
43
1220.657687
13.518568
47.621738
3-3⋅51⋅111
55/27
1231.766654
P85,11
43
1220.657687
-11.108967
-39.133458
CONSISTENT
43
1220.657687
-11.108967
-39.133458
33⋅13-1
27/13
1265.337341
cA113
45
1277.432463
12.095122
42.607380
CONSISTENT
45
1277.432463
12.095122
42.607380
3-4⋅132
169/81
1273.235320
cd213,13
45
1277.432463
4.197143
14.785239
INCONSISTENT
44
1249.045075
-24.190245
-85.214761
3-2⋅191
19/9
1293.603014
cm219
46
1305.819851
12.216837
43.036143
CONSISTENT
46
1305.819851
12.216837
43.036143
31⋅51⋅7-1
15/7
1319.442808
cA157
46
1305.819851
-13.622957
-47.989469
CONSISTENT
46
1305.819851
-13.622957
-47.989469
3-4⋅52⋅71
175/81
1333.633331
cM25,5,7
47
1334.207239
0.573909
2.021703
CONSISTENT
47
1334.207239
0.573909
2.021703
5-1⋅111
11/5
1365.004228
cm2115
48
1362.594627
-2.409601
-8.488280
CONSISTENT
48
1362.594627
-2.409601
-8.488280
34⋅5-1⋅7-1
81/35
1452.680383
cM25,7
51
1447.756792
-4.923591
-17.344292
CONSISTENT
51
1447.756792
-4.923591
-17.344292
3-1⋅71
7/3
1466.870906
cm37
52
1476.144180
9.273274
32.666881
CONSISTENT
52
1476.144180
9.273274
32.666881
3-3⋅51⋅131
65/27
1520.976373
cm35,13
54
1532.918956
11.942583
42.070031
INCONSISTENT
53
1504.531568
-16.444805
-57.929969
33⋅11-1
27/11
1554.547060
cM311
55
1561.306344
6.759284
23.810869
CONSISTENT
55
1561.306344
6.759284
23.810869
32⋅5-2⋅71
63/25
1600.108480
cd475,5
56
1589.693732
-10.414748
-36.687942
INCONSISTENT
57
1618.081120
17.972640
63.312058
31⋅111⋅13-1
33/13
1612.745281
cM31113
57
1618.081120
5.335839
18.796512
CONSISTENT
57
1618.081120
5.335839
18.796512
3-2⋅231
23/9
1624.364346
cM323
57
1618.081120
-6.283225
-22.133862
CONSISTENT
57
1618.081120
-6.283225
-22.133862
5-1⋅131
13/5
1654.213948
cd4135
58
1646.468508
-7.745440
-27.284792
CONSISTENT
58
1646.468508
-7.745440
-27.284792
34⋅31-1
81/31
1662.784431
cP431
59
1674.855896
12.071465
42.524044
CONSISTENT
59
1674.855896
12.071465
42.524044
35⋅7-1⋅13-1
243/91
1700.421436
cA37,13
60
1703.243284
2.821848
9.940500
CONSISTENT
60
1703.243284
2.821848
9.940500
33⋅51⋅7-2
135/49
1754.526904
cA357,7
62
1760.018061
5.491157
19.343650
INCONSISTENT
61
1731.630672
-22.896231
-80.656350
3-2⋅52
25/9
1768.717426
cA45,5
62
1760.018061
-8.699365
-30.645178
CONSISTENT
62
1760.018061
-8.699365
-30.645178
34⋅29-1
81/29
1778.242809
cA429
63
1788.405449
10.162639
35.799839
CONSISTENT
63
1788.405449
10.162639
35.799839
3-3⋅71⋅111
77/27
1814.278846
cd57,11
64
1816.792837
2.513990
8.856012
CONSISTENT
64
1816.792837
2.513990
8.856012
31
3/1
1901.955001
cP5
67
1901.955001
0
0
CONSISTENT
67
1901.955001
0
0


Main article: JI intervals approximated by various scales