User:Contribution/JI intervals approximated by 65edt

From Xenharmonic Wiki
Jump to navigation Jump to search
This page is nominated for deletion.
Reason: These ratios are not relevant.
One of the operators will take care of it shortly.

65edt divides the tritave in 65 equal steps and the octave in 41.010434 equal steps of 29.260846 cents each. Its 31-limit patent val is <41 65 95 115 142 152 168 174 186 199 203|.

Factorization Ratio Value (¢) FJS Nearest
degree
Value (¢) Error (¢) Error (%) Consistency Consistent
degree
Value (¢) Error (¢) Error (%)
1/1
0
P1
0
0
0
0
CONSISTENT
0
0
0
0
3-5⋅51⋅72
245/243
14.190522
m25,7,7
0
0
-14.190522
-48.496624
CONSISTENT
0
0
-14.190522
-48.496624
34⋅7-1⋅11-1
81/77
87.676155
A17,11
3
87.782539
0.106384
0.363571
CONSISTENT
3
87.782539
0.106384
0.363571
3-3⋅291
29/27
123.712192
m229
4
117.043385
-6.668807
-22.790889
CONSISTENT
4
117.043385
-6.668807
-22.790889
33⋅5-2
27/25
133.237575
m25,5
5
146.304231
13.066656
44.655769
CONSISTENT
5
146.304231
13.066656
44.655769
3-2⋅5-1⋅72
49/45
147.428097
d37,75
5
146.304231
-1.123867
-3.840854
CONSISTENT
5
146.304231
-1.123867
-3.840854
3-4⋅71⋅131
91/81
201.533565
d37,13
7
204.825923
3.292358
11.251754
CONSISTENT
7
204.825923
3.292358
11.251754
3-3⋅311
31/27
239.170570
M231
8
234.086769
-5.083801
-17.374072
CONSISTENT
8
234.086769
-5.083801
-17.374072
31⋅51⋅13-1
15/13
247.741053
A2513
8
234.086769
-13.654284
-46.664008
CONSISTENT
8
234.086769
-13.654284
-46.664008
33⋅23-1
27/23
277.590655
m323
9
263.347616
-14.243040
-48.676104
CONSISTENT
9
263.347616
-14.243040
-48.676104
11-1⋅131
13/11
289.209719
m31311
10
292.608462
3.398742
11.615325
CONSISTENT
10
292.608462
3.398742
11.615325
3-1⋅52⋅7-1
25/21
301.846520
A25,57
10
292.608462
-9.238059
-31.571400
CONSISTENT
10
292.608462
-9.238059
-31.571400
3-2⋅111
11/9
347.407941
m311
12
351.130154
3.722213
12.720799
CONSISTENT
12
351.130154
3.722213
12.720799
34⋅5-1⋅13-1
81/65
380.978628
M35,13
13
380.391000
-0.587628
-2.008239
CONSISTENT
13
380.391000
-0.587628
-2.008239
32⋅7-1
9/7
435.084095
M37
15
438.912693
3.828597
13.084370
CONSISTENT
15
438.912693
3.828597
13.084370
3-3⋅51⋅71
35/27
449.274618
P45,7
15
438.912693
-10.361925
-35.412254
CONSISTENT
15
438.912693
-10.361925
-35.412254
31⋅51⋅11-1
15/11
536.950772
A4511
18
526.695231
-10.255541
-35.048683
CONSISTENT
18
526.695231
-10.255541
-35.048683
35⋅5-2⋅7-1
243/175
568.321670
P45,5,7
19
555.956077
-12.365593
-42.259861
INCONSISTENT
20
585.216923
16.895253
57.740139
5-1⋅71
7/5
582.512193
d575
20
585.216923
2.704731
9.243515
CONSISTENT
20
585.216923
2.704731
9.243515
3-5⋅73
343/243
596.702715
d67,7,7
20
585.216923
-11.485792
-39.253109
CONSISTENT
20
585.216923
-11.485792
-39.253109
33⋅19-1
27/19
608.351986
A419
21
614.477770
6.125783
20.935085
CONSISTENT
21
614.477770
6.125783
20.935085
35⋅13-2
243/169
628.719681
AA413,13
21
614.477770
-14.241911
-48.672247
CONSISTENT
21
614.477770
-14.241911
-48.672247
3-2⋅131
13/9
636.617660
d513
22
643.738616
7.120956
24.336123
CONSISTENT
22
643.738616
7.120956
24.336123
34⋅5-1⋅11-1
81/55
670.188347
P55,11
23
672.999462
2.811115
9.607086
CONSISTENT
23
672.999462
2.811115
9.607086
3-4⋅112
121/81
694.815881
d511,11
24
702.260308
7.444427
25.441598
CONSISTENT
24
702.260308
7.444427
25.441598
3-4⋅53
125/81
751.121138
A55,5,5
26
760.782000
9.660862
33.016346
INCONSISTENT
25
731.521154
-19.599984
-66.983654
7-1⋅111
11/7
782.492036
P5117
27
790.042847
7.550811
25.805168
CONSISTENT
27
790.042847
7.550811
25.805168
33⋅17-1
27/17
800.909593
A517
27
790.042847
-10.866747
-37.137499
CONSISTENT
27
790.042847
-10.866747
-37.137499
31⋅71⋅13-1
21/13
830.253246
M6713
28
819.303693
-10.949553
-37.420493
CONSISTENT
28
819.303693
-10.949553
-37.420493
34⋅7-2
81/49
870.168191
A57,7
30
877.825385
7.657194
26.168739
CONSISTENT
30
877.825385
7.657194
26.168739
3-1⋅51
5/3
884.358713
M65
30
877.825385
-6.533328
-22.327885
CONSISTENT
30
877.825385
-6.533328
-22.327885
35⋅11-1⋅13-1
243/143
917.929400
A611,13
31
907.086231
-10.843169
-37.056922
CONSISTENT
31
907.086231
-10.843169
-37.056922
3-4⋅111⋅131
143/81
984.025601
d711,13
34
994.868770
10.843169
37.056922
CONSISTENT
34
994.868770
10.843169
37.056922
32⋅5-1
9/5
1017.596288
m75
35
1024.129616
6.533328
22.327885
CONSISTENT
35
1024.129616
6.533328
22.327885
3-3⋅72
49/27
1031.786810
d87,7
35
1024.129616
-7.657194
-26.168739
CONSISTENT
35
1024.129616
-7.657194
-26.168739
7-1⋅131
13/7
1071.701755
m7137
37
1082.651308
10.949553
37.420493
CONSISTENT
37
1082.651308
10.949553
37.420493
3-2⋅171
17/9
1101.045408
d817
38
1111.912154
10.866747
37.137499
CONSISTENT
38
1111.912154
10.866747
37.137499
31⋅71⋅11-1
21/11
1119.462965
P8711
38
1111.912154
-7.550811
-25.805168
CONSISTENT
38
1111.912154
-7.550811
-25.805168
35⋅5-3
243/125
1150.833863
d85,5,5
39
1141.173001
-9.660862
-33.016346
INCONSISTENT
40
1170.433847
19.599984
66.983654
35⋅11-2
243/121
1207.139120
cA111,11
41
1199.694693
-7.444427
-25.441598
CONSISTENT
41
1199.694693
-7.444427
-25.441598
3-3⋅51⋅111
55/27
1231.766654
P85,11
42
1228.955539
-2.811115
-9.607086
CONSISTENT
42
1228.955539
-2.811115
-9.607086
33⋅13-1
27/13
1265.337341
cA113
43
1258.216385
-7.120956
-24.336123
CONSISTENT
43
1258.216385
-7.120956
-24.336123
3-4⋅132
169/81
1273.235320
cd213,13
44
1287.477231
14.241911
48.672247
CONSISTENT
44
1287.477231
14.241911
48.672247
3-2⋅191
19/9
1293.603014
cm219
44
1287.477231
-6.125783
-20.935085
CONSISTENT
44
1287.477231
-6.125783
-20.935085
31⋅51⋅7-1
15/7
1319.442808
cA157
45
1316.738078
-2.704731
-9.243515
CONSISTENT
45
1316.738078
-2.704731
-9.243515
3-4⋅52⋅71
175/81
1333.633331
cM25,5,7
46
1345.998924
12.365593
42.259861
INCONSISTENT
45
1316.738078
-16.895253
-57.740139
5-1⋅111
11/5
1365.004228
cm2115
47
1375.259770
10.255541
35.048683
CONSISTENT
47
1375.259770
10.255541
35.048683
34⋅5-1⋅7-1
81/35
1452.680383
cM25,7
50
1463.042308
10.361925
35.412254
CONSISTENT
50
1463.042308
10.361925
35.412254
3-1⋅71
7/3
1466.870906
cm37
50
1463.042308
-3.828597
-13.084370
CONSISTENT
50
1463.042308
-3.828597
-13.084370
3-3⋅51⋅131
65/27
1520.976373
cm35,13
52
1521.564001
0.587628
2.008239
CONSISTENT
52
1521.564001
0.587628
2.008239
33⋅11-1
27/11
1554.547060
cM311
53
1550.824847
-3.722213
-12.720799
CONSISTENT
53
1550.824847
-3.722213
-12.720799
32⋅5-2⋅71
63/25
1600.108480
cd475,5
55
1609.346539
9.238059
31.571400
CONSISTENT
55
1609.346539
9.238059
31.571400
31⋅111⋅13-1
33/13
1612.745281
cM31113
55
1609.346539
-3.398742
-11.615325
CONSISTENT
55
1609.346539
-3.398742
-11.615325
3-2⋅231
23/9
1624.364346
cM323
56
1638.607385
14.243040
48.676104
CONSISTENT
56
1638.607385
14.243040
48.676104
5-1⋅131
13/5
1654.213948
cd4135
57
1667.868232
13.654284
46.664008
CONSISTENT
57
1667.868232
13.654284
46.664008
34⋅31-1
81/31
1662.784431
cP431
57
1667.868232
5.083801
17.374072
CONSISTENT
57
1667.868232
5.083801
17.374072
35⋅7-1⋅13-1
243/91
1700.421436
cA37,13
58
1697.129078
-3.292358
-11.251754
CONSISTENT
58
1697.129078
-3.292358
-11.251754
33⋅51⋅7-2
135/49
1754.526904
cA357,7
60
1755.650770
1.123867
3.840854
CONSISTENT
60
1755.650770
1.123867
3.840854
3-2⋅52
25/9
1768.717426
cA45,5
60
1755.650770
-13.066656
-44.655769
CONSISTENT
60
1755.650770
-13.066656
-44.655769
34⋅29-1
81/29
1778.242809
cA429
61
1784.911616
6.668807
22.790889
CONSISTENT
61
1784.911616
6.668807
22.790889
3-3⋅71⋅111
77/27
1814.278846
cd57,11
62
1814.172462
-0.106384
-0.363571
CONSISTENT
62
1814.172462
-0.106384
-0.363571
31
3/1
1901.955001
cP5
65
1901.955001
0
0
CONSISTENT
65
1901.955001
0
0


Main article: JI intervals approximated by various scales