User:Contribution/JI intervals approximated by 56edt

From Xenharmonic Wiki
Jump to navigation Jump to search
This page is nominated for deletion.
Reason: These ratios are not relevant.
One of the operators will take care of it shortly.

56edt divides the tritave in 56 equal steps and the octave in 35.332066 equal steps of 33.963482 cents each. Its 31-limit patent val is <35 56 82 99 122 131 144 150 160 172 175|.

Factorization Ratio Value (¢) FJS Nearest
degree
Value (¢) Error (¢) Error (%) Consistency Consistent
degree
Value (¢) Error (¢) Error (%)
1/1
0
P1
0
0
0
0
CONSISTENT
0
0
0
0
3-5⋅51⋅72
245/243
14.190522
m25,7,7
0
0
-14.190522
-41.781707
CONSISTENT
0
0
-14.190522
-41.781707
34⋅7-1⋅11-1
81/77
87.676155
A17,11
3
101.890446
14.214292
41.851692
CONSISTENT
3
101.890446
14.214292
41.851692
3-3⋅291
29/27
123.712192
m229
4
135.853929
12.141737
35.749388
CONSISTENT
4
135.853929
12.141737
35.749388
33⋅5-2
27/25
133.237575
m25,5
4
135.853929
2.616354
7.703432
CONSISTENT
4
135.853929
2.616354
7.703432
3-2⋅5-1⋅72
49/45
147.428097
d37,75
4
135.853929
-11.574169
-34.078275
CONSISTENT
4
135.853929
-11.574169
-34.078275
3-4⋅71⋅131
91/81
201.533565
d37,13
6
203.780893
2.247328
6.616896
CONSISTENT
6
203.780893
2.247328
6.616896
3-3⋅311
31/27
239.170570
M231
7
237.744375
-1.426195
-4.199201
CONSISTENT
7
237.744375
-1.426195
-4.199201
31⋅51⋅13-1
15/13
247.741053
A2513
7
237.744375
-9.996678
-29.433607
CONSISTENT
7
237.744375
-9.996678
-29.433607
33⋅23-1
27/23
277.590655
m323
8
271.707857
-5.882798
-17.320951
CONSISTENT
8
271.707857
-5.882798
-17.320951
11-1⋅131
13/11
289.209719
m31311
9
305.671339
16.461620
48.468587
CONSISTENT
9
305.671339
16.461620
48.468587
3-1⋅52⋅7-1
25/21
301.846520
A25,57
9
305.671339
3.824819
11.261563
CONSISTENT
9
305.671339
3.824819
11.261563
3-2⋅111
11/9
347.407941
m311
10
339.634822
-7.773119
-22.886696
CONSISTENT
10
339.634822
-7.773119
-22.886696
34⋅5-1⋅13-1
81/65
380.978628
M35,13
11
373.598304
-7.380324
-21.730175
CONSISTENT
11
373.598304
-7.380324
-21.730175
32⋅7-1
9/7
435.084095
M37
13
441.525268
6.441173
18.964995
CONSISTENT
13
441.525268
6.441173
18.964995
3-3⋅51⋅71
35/27
449.274618
P45,7
13
441.525268
-7.749350
-22.816711
CONSISTENT
13
441.525268
-7.749350
-22.816711
31⋅51⋅11-1
15/11
536.950772
A4511
16
543.415715
6.464942
19.034980
CONSISTENT
16
543.415715
6.464942
19.034980
35⋅5-2⋅7-1
243/175
568.321670
P45,5,7
17
577.379197
9.057527
26.668427
CONSISTENT
17
577.379197
9.057527
26.668427
5-1⋅71
7/5
582.512193
d575
17
577.379197
-5.132996
-15.113279
CONSISTENT
17
577.379197
-5.132996
-15.113279
3-5⋅73
343/243
596.702715
d67,7,7
18
611.342679
14.639964
43.105014
INCONSISTENT
17
577.379197
-19.323518
-56.894986
33⋅19-1
27/19
608.351986
A419
18
611.342679
2.990692
8.805612
CONSISTENT
18
611.342679
2.990692
8.805612
35⋅13-2
243/169
628.719681
AA413,13
19
645.306161
16.586480
48.836218
INCONSISTENT
18
611.342679
-17.377002
-51.163782
3-2⋅131
13/9
636.617660
d513
19
645.306161
8.688501
25.581891
CONSISTENT
19
645.306161
8.688501
25.581891
34⋅5-1⋅11-1
81/55
670.188347
P55,11
20
679.269643
9.081296
26.738412
CONSISTENT
20
679.269643
9.081296
26.738412
3-4⋅112
121/81
694.815881
d511,11
20
679.269643
-15.546238
-45.773393
CONSISTENT
20
679.269643
-15.546238
-45.773393
3-4⋅53
125/81
751.121138
A55,5,5
22
747.196607
-3.924531
-11.555148
CONSISTENT
22
747.196607
-3.924531
-11.555148
7-1⋅111
11/7
782.492036
P5117
23
781.160090
-1.331946
-3.921701
CONSISTENT
23
781.160090
-1.331946
-3.921701
33⋅17-1
27/17
800.909593
A517
24
815.123572
14.213979
41.850770
CONSISTENT
24
815.123572
14.213979
41.850770
31⋅71⋅13-1
21/13
830.253246
M6713
24
815.123572
-15.129674
-44.546886
CONSISTENT
24
815.123572
-15.129674
-44.546886
34⋅7-2
81/49
870.168191
A57,7
26
883.050536
12.882346
37.929991
CONSISTENT
26
883.050536
12.882346
37.929991
3-1⋅51
5/3
884.358713
M65
26
883.050536
-1.308177
-3.851716
CONSISTENT
26
883.050536
-1.308177
-3.851716
35⋅11-1⋅13-1
243/143
917.929400
A611,13
27
917.014018
-0.915382
-2.695195
CONSISTENT
27
917.014018
-0.915382
-2.695195
3-4⋅111⋅131
143/81
984.025601
d711,13
29
984.940983
0.915382
2.695195
CONSISTENT
29
984.940983
0.915382
2.695195
32⋅5-1
9/5
1017.596288
m75
30
1018.904465
1.308177
3.851716
CONSISTENT
30
1018.904465
1.308177
3.851716
3-3⋅72
49/27
1031.786810
d87,7
30
1018.904465
-12.882346
-37.929991
CONSISTENT
30
1018.904465
-12.882346
-37.929991
7-1⋅131
13/7
1071.701755
m7137
32
1086.831429
15.129674
44.546886
CONSISTENT
32
1086.831429
15.129674
44.546886
3-2⋅171
17/9
1101.045408
d817
32
1086.831429
-14.213979
-41.850770
CONSISTENT
32
1086.831429
-14.213979
-41.850770
31⋅71⋅11-1
21/11
1119.462965
P8711
33
1120.794911
1.331946
3.921701
CONSISTENT
33
1120.794911
1.331946
3.921701
35⋅5-3
243/125
1150.833863
d85,5,5
34
1154.758393
3.924531
11.555148
CONSISTENT
34
1154.758393
3.924531
11.555148
35⋅11-2
243/121
1207.139120
cA111,11
36
1222.685358
15.546238
45.773393
CONSISTENT
36
1222.685358
15.546238
45.773393
3-3⋅51⋅111
55/27
1231.766654
P85,11
36
1222.685358
-9.081296
-26.738412
CONSISTENT
36
1222.685358
-9.081296
-26.738412
33⋅13-1
27/13
1265.337341
cA113
37
1256.648840
-8.688501
-25.581891
CONSISTENT
37
1256.648840
-8.688501
-25.581891
3-4⋅132
169/81
1273.235320
cd213,13
37
1256.648840
-16.586480
-48.836218
INCONSISTENT
38
1290.612322
17.377002
51.163782
3-2⋅191
19/9
1293.603014
cm219
38
1290.612322
-2.990692
-8.805612
CONSISTENT
38
1290.612322
-2.990692
-8.805612
31⋅51⋅7-1
15/7
1319.442808
cA157
39
1324.575804
5.132996
15.113279
CONSISTENT
39
1324.575804
5.132996
15.113279
3-4⋅52⋅71
175/81
1333.633331
cM25,5,7
39
1324.575804
-9.057527
-26.668427
CONSISTENT
39
1324.575804
-9.057527
-26.668427
5-1⋅111
11/5
1365.004228
cm2115
40
1358.539286
-6.464942
-19.034980
CONSISTENT
40
1358.539286
-6.464942
-19.034980
34⋅5-1⋅7-1
81/35
1452.680383
cM25,7
43
1460.429733
7.749350
22.816711
CONSISTENT
43
1460.429733
7.749350
22.816711
3-1⋅71
7/3
1466.870906
cm37
43
1460.429733
-6.441173
-18.964995
CONSISTENT
43
1460.429733
-6.441173
-18.964995
3-3⋅51⋅131
65/27
1520.976373
cm35,13
45
1528.356697
7.380324
21.730175
CONSISTENT
45
1528.356697
7.380324
21.730175
33⋅11-1
27/11
1554.547060
cM311
46
1562.320179
7.773119
22.886696
CONSISTENT
46
1562.320179
7.773119
22.886696
32⋅5-2⋅71
63/25
1600.108480
cd475,5
47
1596.283661
-3.824819
-11.261563
CONSISTENT
47
1596.283661
-3.824819
-11.261563
31⋅111⋅13-1
33/13
1612.745281
cM31113
47
1596.283661
-16.461620
-48.468587
CONSISTENT
47
1596.283661
-16.461620
-48.468587
3-2⋅231
23/9
1624.364346
cM323
48
1630.247144
5.882798
17.320951
CONSISTENT
48
1630.247144
5.882798
17.320951
5-1⋅131
13/5
1654.213948
cd4135
49
1664.210626
9.996678
29.433607
CONSISTENT
49
1664.210626
9.996678
29.433607
34⋅31-1
81/31
1662.784431
cP431
49
1664.210626
1.426195
4.199201
CONSISTENT
49
1664.210626
1.426195
4.199201
35⋅7-1⋅13-1
243/91
1700.421436
cA37,13
50
1698.174108
-2.247328
-6.616896
CONSISTENT
50
1698.174108
-2.247328
-6.616896
33⋅51⋅7-2
135/49
1754.526904
cA357,7
52
1766.101072
11.574169
34.078275
CONSISTENT
52
1766.101072
11.574169
34.078275
3-2⋅52
25/9
1768.717426
cA45,5
52
1766.101072
-2.616354
-7.703432
CONSISTENT
52
1766.101072
-2.616354
-7.703432
34⋅29-1
81/29
1778.242809
cA429
52
1766.101072
-12.141737
-35.749388
CONSISTENT
52
1766.101072
-12.141737
-35.749388
3-3⋅71⋅111
77/27
1814.278846
cd57,11
53
1800.064554
-14.214292
-41.851692
CONSISTENT
53
1800.064554
-14.214292
-41.851692
31
3/1
1901.955001
cP5
56
1901.955001
0
0
CONSISTENT
56
1901.955001
0
0


Main article: JI intervals approximated by various scales