User:Contribution/JI intervals approximated by 53edt

From Xenharmonic Wiki
Jump to navigation Jump to search
This page is nominated for deletion.
Reason: These ratios are not relevant.
One of the operators will take care of it shortly.

53edt divides the tritave in 53 equal steps and the octave in 33.439277 equal steps of 35.885943 cents each. Its 31-limit patent val is <33 53 78 94 116 124 137 142 151 162 166|.

Factorization Ratio Value (¢) FJS Nearest
degree
Value (¢) Error (¢) Error (%) Consistency Consistent
degree
Value (¢) Error (¢) Error (%)
1/1
0
P1
0
0
0
0
CONSISTENT
0
0
0
0
3-5⋅51⋅72
245/243
14.190522
m25,7,7
0
0
-14.190522
-39.543401
INCONSISTENT
1
35.885943
21.695421
60.456599
34⋅7-1⋅11-1
81/77
87.676155
A17,11
2
71.771887
-15.904268
-44.318935
CONSISTENT
2
71.771887
-15.904268
-44.318935
3-3⋅291
29/27
123.712192
m229
3
107.657830
-16.054361
-44.737186
CONSISTENT
3
107.657830
-16.054361
-44.737186
33⋅5-2
27/25
133.237575
m25,5
4
143.543774
10.306199
28.719320
INCONSISTENT
3
107.657830
-25.579745
-71.280680
3-2⋅5-1⋅72
49/45
147.428097
d37,75
4
143.543774
-3.884324
-10.824081
CONSISTENT
4
143.543774
-3.884324
-10.824081
3-4⋅71⋅131
91/81
201.533565
d37,13
6
215.315660
13.782096
38.405276
CONSISTENT
6
215.315660
13.782096
38.405276
3-3⋅311
31/27
239.170570
M231
7
251.201604
12.031034
33.525757
CONSISTENT
7
251.201604
12.031034
33.525757
31⋅51⋅13-1
15/13
247.741053
A2513
7
251.201604
3.460551
9.643193
CONSISTENT
7
251.201604
3.460551
9.643193
33⋅23-1
27/23
277.590655
m323
8
287.087547
9.496892
26.464100
CONSISTENT
8
287.087547
9.496892
26.464100
11-1⋅131
13/11
289.209719
m31311
8
287.087547
-2.122172
-5.913658
CONSISTENT
8
287.087547
-2.122172
-5.913658
3-1⋅52⋅7-1
25/21
301.846520
A25,57
8
287.087547
-14.758973
-41.127449
INCONSISTENT
9
322.973491
21.126970
58.872551
3-2⋅111
11/9
347.407941
m311
10
358.859434
11.451493
31.910805
CONSISTENT
10
358.859434
11.451493
31.910805
34⋅5-1⋅13-1
81/65
380.978628
M35,13
11
394.745378
13.766750
38.362513
INCONSISTENT
10
358.859434
-22.119194
-61.637487
32⋅7-1
9/7
435.084095
M37
12
430.631321
-4.452774
-12.408129
CONSISTENT
12
430.631321
-4.452774
-12.408129
3-3⋅51⋅71
35/27
449.274618
P45,7
13
466.517264
17.242647
48.048470
CONSISTENT
13
466.517264
17.242647
48.048470
31⋅51⋅11-1
15/11
536.950772
A4511
15
538.289151
1.338379
3.729535
CONSISTENT
15
538.289151
1.338379
3.729535
35⋅5-2⋅7-1
243/175
568.321670
P45,5,7
16
574.175095
5.853424
16.311190
INCONSISTENT
15
538.289151
-30.032519
-83.688810
5-1⋅71
7/5
582.512193
d575
16
574.175095
-8.337098
-23.232211
CONSISTENT
16
574.175095
-8.337098
-23.232211
3-5⋅73
343/243
596.702715
d67,7,7
17
610.061038
13.358323
37.224388
CONSISTENT
17
610.061038
13.358323
37.224388
33⋅19-1
27/19
608.351986
A419
17
610.061038
1.709052
4.762454
CONSISTENT
17
610.061038
1.709052
4.762454
35⋅13-2
243/169
628.719681
AA413,13
18
645.946981
17.227301
48.005706
INCONSISTENT
17
610.061038
-18.658643
-51.994294
3-2⋅131
13/9
636.617660
d513
18
645.946981
9.329321
25.997147
CONSISTENT
18
645.946981
9.329321
25.997147
34⋅5-1⋅11-1
81/55
670.188347
P55,11
19
681.832925
11.644578
32.448855
INCONSISTENT
18
645.946981
-24.241366
-67.551145
3-4⋅112
121/81
694.815881
d511,11
19
681.832925
-12.982956
-36.178390
INCONSISTENT
20
717.718868
22.902987
63.821610
3-4⋅53
125/81
751.121138
A55,5,5
21
753.604812
2.483674
6.921021
INCONSISTENT
22
789.490755
38.369617
106.921021
7-1⋅111
11/7
782.492036
P5117
22
789.490755
6.998719
19.502676
CONSISTENT
22
789.490755
6.998719
19.502676
33⋅17-1
27/17
800.909593
A517
22
789.490755
-11.418838
-31.819807
CONSISTENT
22
789.490755
-11.418838
-31.819807
31⋅71⋅13-1
21/13
830.253246
M6713
23
825.376698
-4.876547
-13.589017
CONSISTENT
23
825.376698
-4.876547
-13.589017
34⋅7-2
81/49
870.168191
A57,7
24
861.262642
-8.905549
-24.816259
CONSISTENT
24
861.262642
-8.905549
-24.816259
3-1⋅51
5/3
884.358713
M65
25
897.148585
12.789872
35.640340
CONSISTENT
25
897.148585
12.789872
35.640340
35⋅11-1⋅13-1
243/143
917.929400
A611,13
26
933.034529
15.105129
42.092048
INCONSISTENT
25
897.148585
-20.780815
-57.907952
3-4⋅111⋅131
143/81
984.025601
d711,13
27
968.920472
-15.105129
-42.092048
INCONSISTENT
28
1004.806416
20.780815
57.907952
32⋅5-1
9/5
1017.596288
m75
28
1004.806416
-12.789872
-35.640340
CONSISTENT
28
1004.806416
-12.789872
-35.640340
3-3⋅72
49/27
1031.786810
d87,7
29
1040.692359
8.905549
24.816259
CONSISTENT
29
1040.692359
8.905549
24.816259
7-1⋅131
13/7
1071.701755
m7137
30
1076.578302
4.876547
13.589017
CONSISTENT
30
1076.578302
4.876547
13.589017
3-2⋅171
17/9
1101.045408
d817
31
1112.464246
11.418838
31.819807
CONSISTENT
31
1112.464246
11.418838
31.819807
31⋅71⋅11-1
21/11
1119.462965
P8711
31
1112.464246
-6.998719
-19.502676
CONSISTENT
31
1112.464246
-6.998719
-19.502676
35⋅5-3
243/125
1150.833863
d85,5,5
32
1148.350189
-2.483674
-6.921021
INCONSISTENT
31
1112.464246
-38.369617
-106.921021
35⋅11-2
243/121
1207.139120
cA111,11
34
1220.122076
12.982956
36.178390
INCONSISTENT
33
1184.236133
-22.902987
-63.821610
3-3⋅51⋅111
55/27
1231.766654
P85,11
34
1220.122076
-11.644578
-32.448855
INCONSISTENT
35
1256.008019
24.241366
67.551145
33⋅13-1
27/13
1265.337341
cA113
35
1256.008019
-9.329321
-25.997147
CONSISTENT
35
1256.008019
-9.329321
-25.997147
3-4⋅132
169/81
1273.235320
cd213,13
35
1256.008019
-17.227301
-48.005706
INCONSISTENT
36
1291.893963
18.658643
51.994294
3-2⋅191
19/9
1293.603014
cm219
36
1291.893963
-1.709052
-4.762454
CONSISTENT
36
1291.893963
-1.709052
-4.762454
31⋅51⋅7-1
15/7
1319.442808
cA157
37
1327.779906
8.337098
23.232211
CONSISTENT
37
1327.779906
8.337098
23.232211
3-4⋅52⋅71
175/81
1333.633331
cM25,5,7
37
1327.779906
-5.853424
-16.311190
INCONSISTENT
38
1363.665850
30.032519
83.688810
5-1⋅111
11/5
1365.004228
cm2115
38
1363.665850
-1.338379
-3.729535
CONSISTENT
38
1363.665850
-1.338379
-3.729535
34⋅5-1⋅7-1
81/35
1452.680383
cM25,7
40
1435.437737
-17.242647
-48.048470
CONSISTENT
40
1435.437737
-17.242647
-48.048470
3-1⋅71
7/3
1466.870906
cm37
41
1471.323680
4.452774
12.408129
CONSISTENT
41
1471.323680
4.452774
12.408129
3-3⋅51⋅131
65/27
1520.976373
cm35,13
42
1507.209623
-13.766750
-38.362513
INCONSISTENT
43
1543.095567
22.119194
61.637487
33⋅11-1
27/11
1554.547060
cM311
43
1543.095567
-11.451493
-31.910805
CONSISTENT
43
1543.095567
-11.451493
-31.910805
32⋅5-2⋅71
63/25
1600.108480
cd475,5
45
1614.867454
14.758973
41.127449
INCONSISTENT
44
1578.981510
-21.126970
-58.872551
31⋅111⋅13-1
33/13
1612.745281
cM31113
45
1614.867454
2.122172
5.913658
CONSISTENT
45
1614.867454
2.122172
5.913658
3-2⋅231
23/9
1624.364346
cM323
45
1614.867454
-9.496892
-26.464100
CONSISTENT
45
1614.867454
-9.496892
-26.464100
5-1⋅131
13/5
1654.213948
cd4135
46
1650.753397
-3.460551
-9.643193
CONSISTENT
46
1650.753397
-3.460551
-9.643193
34⋅31-1
81/31
1662.784431
cP431
46
1650.753397
-12.031034
-33.525757
CONSISTENT
46
1650.753397
-12.031034
-33.525757
35⋅7-1⋅13-1
243/91
1700.421436
cA37,13
47
1686.639340
-13.782096
-38.405276
CONSISTENT
47
1686.639340
-13.782096
-38.405276
33⋅51⋅7-2
135/49
1754.526904
cA357,7
49
1758.411227
3.884324
10.824081
CONSISTENT
49
1758.411227
3.884324
10.824081
3-2⋅52
25/9
1768.717426
cA45,5
49
1758.411227
-10.306199
-28.719320
INCONSISTENT
50
1794.297171
25.579745
71.280680
34⋅29-1
81/29
1778.242809
cA429
50
1794.297171
16.054361
44.737186
CONSISTENT
50
1794.297171
16.054361
44.737186
3-3⋅71⋅111
77/27
1814.278846
cd57,11
51
1830.183114
15.904268
44.318935
CONSISTENT
51
1830.183114
15.904268
44.318935
31
3/1
1901.955001
cP5
53
1901.955001
0
0
CONSISTENT
53
1901.955001
0
0


Main article: JI intervals approximated by various scales