User:Contribution/JI intervals approximated by 52edt

From Xenharmonic Wiki
Jump to navigation Jump to search
This page is nominated for deletion.
Reason: These ratios are not relevant.
One of the operators will take care of it shortly.

52edt divides the tritave in 52 equal steps and the octave in 32.808347 equal steps of 36.576058 cents each. Its 31-limit patent val is <33 52 76 92 113 121 134 139 148 159 163|.

Factorization Ratio Value (¢) FJS Nearest
degree
Value (¢) Error (¢) Error (%) Consistency Consistent
degree
Value (¢) Error (¢) Error (%)
1/1
0
P1
0
0
0
0
CONSISTENT
0
0
0
0
3-5⋅51⋅72
245/243
14.190522
m25,7,7
0
0
-14.190522
-38.797299
CONSISTENT
0
0
-14.190522
-38.797299
34⋅7-1⋅11-1
81/77
87.676155
A17,11
2
73.152115
-14.524039
-39.709143
INCONSISTENT
3
109.728173
22.052018
60.290857
3-3⋅291
29/27
123.712192
m229
3
109.728173
-13.984018
-38.232711
CONSISTENT
3
109.728173
-13.984018
-38.232711
33⋅5-2
27/25
133.237575
m25,5
4
146.304231
13.066656
35.724615
CONSISTENT
4
146.304231
13.066656
35.724615
3-2⋅5-1⋅72
49/45
147.428097
d37,75
4
146.304231
-1.123867
-3.072684
CONSISTENT
4
146.304231
-1.123867
-3.072684
3-4⋅71⋅131
91/81
201.533565
d37,13
6
219.456346
17.922781
49.001403
INCONSISTENT
5
182.880289
-18.653276
-50.998597
3-3⋅311
31/27
239.170570
M231
7
256.032404
16.861834
46.100742
CONSISTENT
7
256.032404
16.861834
46.100742
31⋅51⋅13-1
15/13
247.741053
A2513
7
256.032404
8.291351
22.668794
CONSISTENT
7
256.032404
8.291351
22.668794
33⋅23-1
27/23
277.590655
m323
8
292.608462
15.017806
41.059117
CONSISTENT
8
292.608462
15.017806
41.059117
11-1⋅131
13/11
289.209719
m31311
8
292.608462
3.398742
9.292260
CONSISTENT
8
292.608462
3.398742
9.292260
3-1⋅52⋅7-1
25/21
301.846520
A25,57
8
292.608462
-9.238059
-25.257120
CONSISTENT
8
292.608462
-9.238059
-25.257120
3-2⋅111
11/9
347.407941
m311
9
329.184519
-18.223421
-49.823361
CONSISTENT
9
329.184519
-18.223421
-49.823361
34⋅5-1⋅13-1
81/65
380.978628
M35,13
10
365.760577
-15.218051
-41.606591
INCONSISTENT
11
402.336635
21.358007
58.393409
32⋅7-1
9/7
435.084095
M37
12
438.912693
3.828597
10.467496
CONSISTENT
12
438.912693
3.828597
10.467496
3-3⋅51⋅71
35/27
449.274618
P45,7
12
438.912693
-10.361925
-28.329803
CONSISTENT
12
438.912693
-10.361925
-28.329803
31⋅51⋅11-1
15/11
536.950772
A4511
15
548.640866
11.690093
31.961053
CONSISTENT
15
548.640866
11.690093
31.961053
35⋅5-2⋅7-1
243/175
568.321670
P45,5,7
16
585.216923
16.895253
46.192111
CONSISTENT
16
585.216923
16.895253
46.192111
5-1⋅71
7/5
582.512193
d575
16
585.216923
2.704731
7.394812
CONSISTENT
16
585.216923
2.704731
7.394812
3-5⋅73
343/243
596.702715
d67,7,7
16
585.216923
-11.485792
-31.402487
CONSISTENT
16
585.216923
-11.485792
-31.402487
33⋅19-1
27/19
608.351986
A419
17
621.792981
13.440995
36.748068
CONSISTENT
17
621.792981
13.440995
36.748068
35⋅13-2
243/169
628.719681
AA413,13
17
621.792981
-6.926700
-18.937797
INCONSISTENT
18
658.369039
29.649358
81.062203
3-2⋅131
13/9
636.617660
d513
17
621.792981
-14.824679
-40.531101
CONSISTENT
17
621.792981
-14.824679
-40.531101
34⋅5-1⋅11-1
81/55
670.188347
P55,11
18
658.369039
-11.819308
-32.314331
INCONSISTENT
19
694.945096
24.756749
67.685669
3-4⋅112
121/81
694.815881
d511,11
19
694.945096
0.129215
0.353278
INCONSISTENT
18
658.369039
-36.446843
-99.646722
3-4⋅53
125/81
751.121138
A55,5,5
21
768.097212
16.976074
46.413077
INCONSISTENT
20
731.521154
-19.599984
-53.586923
7-1⋅111
11/7
782.492036
P5117
21
768.097212
-14.394824
-39.355865
CONSISTENT
21
768.097212
-14.394824
-39.355865
33⋅17-1
27/17
800.909593
A517
22
804.673270
3.763677
10.290000
CONSISTENT
22
804.673270
3.763677
10.290000
31⋅71⋅13-1
21/13
830.253246
M6713
23
841.249327
10.996082
30.063606
CONSISTENT
23
841.249327
10.996082
30.063606
34⋅7-2
81/49
870.168191
A57,7
24
877.825385
7.657194
20.934991
CONSISTENT
24
877.825385
7.657194
20.934991
3-1⋅51
5/3
884.358713
M65
24
877.825385
-6.533328
-17.862308
CONSISTENT
24
877.825385
-6.533328
-17.862308
35⋅11-1⋅13-1
243/143
917.929400
A611,13
25
914.401443
-3.527957
-9.645538
INCONSISTENT
26
950.977500
33.048100
90.354462
3-4⋅111⋅131
143/81
984.025601
d711,13
27
987.553558
3.527957
9.645538
INCONSISTENT
26
950.977500
-33.048100
-90.354462
32⋅5-1
9/5
1017.596288
m75
28
1024.129616
6.533328
17.862308
CONSISTENT
28
1024.129616
6.533328
17.862308
3-3⋅72
49/27
1031.786810
d87,7
28
1024.129616
-7.657194
-20.934991
CONSISTENT
28
1024.129616
-7.657194
-20.934991
7-1⋅131
13/7
1071.701755
m7137
29
1060.705674
-10.996082
-30.063606
CONSISTENT
29
1060.705674
-10.996082
-30.063606
3-2⋅171
17/9
1101.045408
d817
30
1097.281731
-3.763677
-10.290000
CONSISTENT
30
1097.281731
-3.763677
-10.290000
31⋅71⋅11-1
21/11
1119.462965
P8711
31
1133.857789
14.394824
39.355865
CONSISTENT
31
1133.857789
14.394824
39.355865
35⋅5-3
243/125
1150.833863
d85,5,5
31
1133.857789
-16.976074
-46.413077
INCONSISTENT
32
1170.433847
19.599984
53.586923
35⋅11-2
243/121
1207.139120
cA111,11
33
1207.009904
-0.129215
-0.353278
INCONSISTENT
34
1243.585962
36.446843
99.646722
3-3⋅51⋅111
55/27
1231.766654
P85,11
34
1243.585962
11.819308
32.314331
INCONSISTENT
33
1207.009904
-24.756749
-67.685669
33⋅13-1
27/13
1265.337341
cA113
35
1280.162020
14.824679
40.531101
CONSISTENT
35
1280.162020
14.824679
40.531101
3-4⋅132
169/81
1273.235320
cd213,13
35
1280.162020
6.926700
18.937797
INCONSISTENT
34
1243.585962
-29.649358
-81.062203
3-2⋅191
19/9
1293.603014
cm219
35
1280.162020
-13.440995
-36.748068
CONSISTENT
35
1280.162020
-13.440995
-36.748068
31⋅51⋅7-1
15/7
1319.442808
cA157
36
1316.738078
-2.704731
-7.394812
CONSISTENT
36
1316.738078
-2.704731
-7.394812
3-4⋅52⋅71
175/81
1333.633331
cM25,5,7
36
1316.738078
-16.895253
-46.192111
CONSISTENT
36
1316.738078
-16.895253
-46.192111
5-1⋅111
11/5
1365.004228
cm2115
37
1353.314135
-11.690093
-31.961053
CONSISTENT
37
1353.314135
-11.690093
-31.961053
34⋅5-1⋅7-1
81/35
1452.680383
cM25,7
40
1463.042308
10.361925
28.329803
CONSISTENT
40
1463.042308
10.361925
28.329803
3-1⋅71
7/3
1466.870906
cm37
40
1463.042308
-3.828597
-10.467496
CONSISTENT
40
1463.042308
-3.828597
-10.467496
3-3⋅51⋅131
65/27
1520.976373
cm35,13
42
1536.194424
15.218051
41.606591
INCONSISTENT
41
1499.618366
-21.358007
-58.393409
33⋅11-1
27/11
1554.547060
cM311
43
1572.770481
18.223421
49.823361
CONSISTENT
43
1572.770481
18.223421
49.823361
32⋅5-2⋅71
63/25
1600.108480
cd475,5
44
1609.346539
9.238059
25.257120
CONSISTENT
44
1609.346539
9.238059
25.257120
31⋅111⋅13-1
33/13
1612.745281
cM31113
44
1609.346539
-3.398742
-9.292260
CONSISTENT
44
1609.346539
-3.398742
-9.292260
3-2⋅231
23/9
1624.364346
cM323
44
1609.346539
-15.017806
-41.059117
CONSISTENT
44
1609.346539
-15.017806
-41.059117
5-1⋅131
13/5
1654.213948
cd4135
45
1645.922597
-8.291351
-22.668794
CONSISTENT
45
1645.922597
-8.291351
-22.668794
34⋅31-1
81/31
1662.784431
cP431
45
1645.922597
-16.861834
-46.100742
CONSISTENT
45
1645.922597
-16.861834
-46.100742
35⋅7-1⋅13-1
243/91
1700.421436
cA37,13
46
1682.498655
-17.922781
-49.001403
INCONSISTENT
47
1719.074712
18.653276
50.998597
33⋅51⋅7-2
135/49
1754.526904
cA357,7
48
1755.650770
1.123867
3.072684
CONSISTENT
48
1755.650770
1.123867
3.072684
3-2⋅52
25/9
1768.717426
cA45,5
48
1755.650770
-13.066656
-35.724615
CONSISTENT
48
1755.650770
-13.066656
-35.724615
34⋅29-1
81/29
1778.242809
cA429
49
1792.226828
13.984018
38.232711
CONSISTENT
49
1792.226828
13.984018
38.232711
3-3⋅71⋅111
77/27
1814.278846
cd57,11
50
1828.802885
14.524039
39.709143
INCONSISTENT
49
1792.226828
-22.052018
-60.290857
31
3/1
1901.955001
cP5
52
1901.955001
0
0
CONSISTENT
52
1901.955001
0
0


Main article: JI intervals approximated by various scales