User:Contribution/JI intervals approximated by 51edt

From Xenharmonic Wiki
Jump to navigation Jump to search
This page is nominated for deletion.
Reason: These ratios are not relevant.
One of the operators will take care of it shortly.

51edt divides the tritave in 51 equal steps and the octave in 32.177417 equal steps of 37.293235 cents each. Its 31-limit patent val is <32 51 75 90 111 119 132 137 146 156 159|.

Factorization Ratio Value (¢) FJS Nearest
degree
Value (¢) Error (¢) Error (%) Consistency Consistent
degree
Value (¢) Error (¢) Error (%)
1/1
0
P1
0
0
0
0
CONSISTENT
0
0
0
0
3-5⋅51⋅72
245/243
14.190522
m25,7,7
0
0
-14.190522
-38.051197
CONSISTENT
0
0
-14.190522
-38.051197
34⋅7-1⋅11-1
81/77
87.676155
A17,11
2
74.586471
-13.089684
-35.099352
INCONSISTENT
3
111.879706
24.203551
64.900648
3-3⋅291
29/27
123.712192
m229
3
111.879706
-11.832486
-31.728236
CONSISTENT
3
111.879706
-11.832486
-31.728236
33⋅5-2
27/25
133.237575
m25,5
4
149.172941
15.935366
42.729911
INCONSISTENT
3
111.879706
-21.357869
-57.270089
3-2⋅5-1⋅72
49/45
147.428097
d37,75
4
149.172941
1.744844
4.678714
INCONSISTENT
3
111.879706
-35.548391
-95.321286
3-4⋅71⋅131
91/81
201.533565
d37,13
5
186.466177
-15.067388
-40.402470
CONSISTENT
5
186.466177
-15.067388
-40.402470
3-3⋅311
31/27
239.170570
M231
6
223.759412
-15.411158
-41.324272
CONSISTENT
6
223.759412
-15.411158
-41.324272
31⋅51⋅13-1
15/13
247.741053
A2513
7
261.052647
13.311594
35.694394
CONSISTENT
7
261.052647
13.311594
35.694394
33⋅23-1
27/23
277.590655
m323
7
261.052647
-16.538008
-44.345866
CONSISTENT
7
261.052647
-16.538008
-44.345866
11-1⋅131
13/11
289.209719
m31311
8
298.345882
9.136163
24.498178
CONSISTENT
8
298.345882
9.136163
24.498178
3-1⋅52⋅7-1
25/21
301.846520
A25,57
8
298.345882
-3.500638
-9.386791
INCONSISTENT
9
335.639118
33.792597
90.613209
3-2⋅111
11/9
347.407941
m311
9
335.639118
-11.768823
-31.557527
CONSISTENT
9
335.639118
-11.768823
-31.557527
34⋅5-1⋅13-1
81/65
380.978628
M35,13
10
372.932353
-8.046275
-21.575695
CONSISTENT
10
372.932353
-8.046275
-21.575695
32⋅7-1
9/7
435.084095
M37
12
447.518824
12.434728
33.343121
CONSISTENT
12
447.518824
12.434728
33.343121
3-3⋅51⋅71
35/27
449.274618
P45,7
12
447.518824
-1.755794
-4.708076
CONSISTENT
12
447.518824
-1.755794
-4.708076
31⋅51⋅11-1
15/11
536.950772
A4511
14
522.105294
-14.845478
-39.807429
INCONSISTENT
15
559.398530
22.447757
60.192571
35⋅5-2⋅7-1
243/175
568.321670
P45,5,7
15
559.398530
-8.923140
-23.926968
CONSISTENT
15
559.398530
-8.923140
-23.926968
5-1⋅71
7/5
582.512193
d575
16
596.691765
14.179572
38.021835
INCONSISTENT
15
559.398530
-23.113663
-61.978165
3-5⋅73
343/243
596.702715
d67,7,7
16
596.691765
-0.010950
-0.029362
INCONSISTENT
15
559.398530
-37.304185
-100.029362
33⋅19-1
27/19
608.351986
A419
16
596.691765
-11.660221
-31.266318
CONSISTENT
16
596.691765
-11.660221
-31.266318
35⋅13-2
243/169
628.719681
AA413,13
17
633.985000
5.265320
14.118699
CONSISTENT
17
633.985000
5.265320
14.118699
3-2⋅131
13/9
636.617660
d513
17
633.985000
-2.632660
-7.059349
CONSISTENT
17
633.985000
-2.632660
-7.059349
34⋅5-1⋅11-1
81/55
670.188347
P55,11
18
671.278236
1.089888
2.922483
CONSISTENT
18
671.278236
1.089888
2.922483
3-4⋅112
121/81
694.815881
d511,11
19
708.571471
13.755590
36.884946
INCONSISTENT
18
671.278236
-23.537646
-63.115054
3-4⋅53
125/81
751.121138
A55,5,5
20
745.864706
-5.256432
-14.094867
INCONSISTENT
21
783.157942
32.036803
85.905133
7-1⋅111
11/7
782.492036
P5117
21
783.157942
0.665906
1.785594
CONSISTENT
21
783.157942
0.665906
1.785594
33⋅17-1
27/17
800.909593
A517
21
783.157942
-17.751652
-47.600192
CONSISTENT
21
783.157942
-17.751652
-47.600192
31⋅71⋅13-1
21/13
830.253246
M6713
22
820.451177
-9.802069
-26.283771
CONSISTENT
22
820.451177
-9.802069
-26.283771
34⋅7-2
81/49
870.168191
A57,7
23
857.744412
-12.423778
-33.313759
INCONSISTENT
24
895.037647
24.869457
66.686241
3-1⋅51
5/3
884.358713
M65
24
895.037647
10.678934
28.635044
CONSISTENT
24
895.037647
10.678934
28.635044
35⋅11-1⋅13-1
243/143
917.929400
A611,13
25
932.330883
14.401483
38.616876
CONSISTENT
25
932.330883
14.401483
38.616876
3-4⋅111⋅131
143/81
984.025601
d711,13
26
969.624118
-14.401483
-38.616876
CONSISTENT
26
969.624118
-14.401483
-38.616876
32⋅5-1
9/5
1017.596288
m75
27
1006.917353
-10.678934
-28.635044
CONSISTENT
27
1006.917353
-10.678934
-28.635044
3-3⋅72
49/27
1031.786810
d87,7
28
1044.210589
12.423778
33.313759
INCONSISTENT
27
1006.917353
-24.869457
-66.686241
7-1⋅131
13/7
1071.701755
m7137
29
1081.503824
9.802069
26.283771
CONSISTENT
29
1081.503824
9.802069
26.283771
3-2⋅171
17/9
1101.045408
d817
30
1118.797059
17.751652
47.600192
CONSISTENT
30
1118.797059
17.751652
47.600192
31⋅71⋅11-1
21/11
1119.462965
P8711
30
1118.797059
-0.665906
-1.785594
CONSISTENT
30
1118.797059
-0.665906
-1.785594
35⋅5-3
243/125
1150.833863
d85,5,5
31
1156.090295
5.256432
14.094867
INCONSISTENT
30
1118.797059
-32.036803
-85.905133
35⋅11-2
243/121
1207.139120
cA111,11
32
1193.383530
-13.755590
-36.884946
INCONSISTENT
33
1230.676765
23.537646
63.115054
3-3⋅51⋅111
55/27
1231.766654
P85,11
33
1230.676765
-1.089888
-2.922483
CONSISTENT
33
1230.676765
-1.089888
-2.922483
33⋅13-1
27/13
1265.337341
cA113
34
1267.970001
2.632660
7.059349
CONSISTENT
34
1267.970001
2.632660
7.059349
3-4⋅132
169/81
1273.235320
cd213,13
34
1267.970001
-5.265320
-14.118699
CONSISTENT
34
1267.970001
-5.265320
-14.118699
3-2⋅191
19/9
1293.603014
cm219
35
1305.263236
11.660221
31.266318
CONSISTENT
35
1305.263236
11.660221
31.266318
31⋅51⋅7-1
15/7
1319.442808
cA157
35
1305.263236
-14.179572
-38.021835
INCONSISTENT
36
1342.556471
23.113663
61.978165
3-4⋅52⋅71
175/81
1333.633331
cM25,5,7
36
1342.556471
8.923140
23.926968
CONSISTENT
36
1342.556471
8.923140
23.926968
5-1⋅111
11/5
1365.004228
cm2115
37
1379.849707
14.845478
39.807429
INCONSISTENT
36
1342.556471
-22.447757
-60.192571
34⋅5-1⋅7-1
81/35
1452.680383
cM25,7
39
1454.436177
1.755794
4.708076
CONSISTENT
39
1454.436177
1.755794
4.708076
3-1⋅71
7/3
1466.870906
cm37
39
1454.436177
-12.434728
-33.343121
CONSISTENT
39
1454.436177
-12.434728
-33.343121
3-3⋅51⋅131
65/27
1520.976373
cm35,13
41
1529.022648
8.046275
21.575695
CONSISTENT
41
1529.022648
8.046275
21.575695
33⋅11-1
27/11
1554.547060
cM311
42
1566.315883
11.768823
31.557527
CONSISTENT
42
1566.315883
11.768823
31.557527
32⋅5-2⋅71
63/25
1600.108480
cd475,5
43
1603.609118
3.500638
9.386791
INCONSISTENT
42
1566.315883
-33.792597
-90.613209
31⋅111⋅13-1
33/13
1612.745281
cM31113
43
1603.609118
-9.136163
-24.498178
CONSISTENT
43
1603.609118
-9.136163
-24.498178
3-2⋅231
23/9
1624.364346
cM323
44
1640.902354
16.538008
44.345866
CONSISTENT
44
1640.902354
16.538008
44.345866
5-1⋅131
13/5
1654.213948
cd4135
44
1640.902354
-13.311594
-35.694394
CONSISTENT
44
1640.902354
-13.311594
-35.694394
34⋅31-1
81/31
1662.784431
cP431
45
1678.195589
15.411158
41.324272
CONSISTENT
45
1678.195589
15.411158
41.324272
35⋅7-1⋅13-1
243/91
1700.421436
cA37,13
46
1715.488824
15.067388
40.402470
CONSISTENT
46
1715.488824
15.067388
40.402470
33⋅51⋅7-2
135/49
1754.526904
cA357,7
47
1752.782060
-1.744844
-4.678714
INCONSISTENT
48
1790.075295
35.548391
95.321286
3-2⋅52
25/9
1768.717426
cA45,5
47
1752.782060
-15.935366
-42.729911
INCONSISTENT
48
1790.075295
21.357869
57.270089
34⋅29-1
81/29
1778.242809
cA429
48
1790.075295
11.832486
31.728236
CONSISTENT
48
1790.075295
11.832486
31.728236
3-3⋅71⋅111
77/27
1814.278846
cd57,11
49
1827.368530
13.089684
35.099352
INCONSISTENT
48
1790.075295
-24.203551
-64.900648
31
3/1
1901.955001
cP5
51
1901.955001
0
0
CONSISTENT
51
1901.955001
0
0


Main article: JI intervals approximated by various scales