User:Contribution/JI intervals approximated by 42edt

From Xenharmonic Wiki
Jump to navigation Jump to search
This page is nominated for deletion.
Reason: These ratios are not relevant.
One of the operators will take care of it shortly.

42edt divides the tritave in 42 equal steps and the octave in 26.499050 equal steps of 45.284643 cents each. Its 31-limit patent val is <26 42 62 74 92 98 108 113 120 129 131|.

Factorization Ratio Value (¢) FJS Nearest
degree
Value (¢) Error (¢) Error (%) Consistency Consistent
degree
Value (¢) Error (¢) Error (%)
1/1
0
P1
0
0
0
0
CONSISTENT
0
0
0
0
3-5⋅51⋅72
245/243
14.190522
m25,7,7
0
0
-14.190522
-31.336280
CONSISTENT
0
0
-14.190522
-31.336280
34⋅7-1⋅11-1
81/77
87.676155
A17,11
2
90.569286
2.893131
6.388769
CONSISTENT
2
90.569286
2.893131
6.388769
3-3⋅291
29/27
123.712192
m229
3
135.853929
12.141737
26.812041
CONSISTENT
3
135.853929
12.141737
26.812041
33⋅5-2
27/25
133.237575
m25,5
3
135.853929
2.616354
5.777574
INCONSISTENT
2
90.569286
-42.668289
-94.222426
3-2⋅5-1⋅72
49/45
147.428097
d37,75
3
135.853929
-11.574169
-25.558706
INCONSISTENT
2
90.569286
-56.858812
-125.558706
3-4⋅71⋅131
91/81
201.533565
d37,13
4
181.138572
-20.394993
-45.037328
CONSISTENT
4
181.138572
-20.394993
-45.037328
3-3⋅311
31/27
239.170570
M231
5
226.423214
-12.747355
-28.149400
CONSISTENT
5
226.423214
-12.747355
-28.149400
31⋅51⋅13-1
15/13
247.741053
A2513
5
226.423214
-21.317839
-47.075205
INCONSISTENT
6
271.707857
23.966804
52.924795
33⋅23-1
27/23
277.590655
m323
6
271.707857
-5.882798
-12.990713
CONSISTENT
6
271.707857
-5.882798
-12.990713
11-1⋅131
13/11
289.209719
m31311
6
271.707857
-17.501862
-38.648559
CONSISTENT
6
271.707857
-17.501862
-38.648559
3-1⋅52⋅7-1
25/21
301.846520
A25,57
7
316.992500
15.145980
33.446172
INCONSISTENT
8
362.277143
60.430623
133.446172
3-2⋅111
11/9
347.407941
m311
8
362.277143
14.869202
32.834978
CONSISTENT
8
362.277143
14.869202
32.834978
34⋅5-1⋅13-1
81/65
380.978628
M35,13
8
362.277143
-18.701485
-41.297631
CONSISTENT
8
362.277143
-18.701485
-41.297631
32⋅7-1
9/7
435.084095
M37
10
452.846429
17.762334
39.223746
CONSISTENT
10
452.846429
17.762334
39.223746
3-3⋅51⋅71
35/27
449.274618
P45,7
10
452.846429
3.571811
7.887467
CONSISTENT
10
452.846429
3.571811
7.887467
31⋅51⋅11-1
15/11
536.950772
A4511
12
543.415715
6.464942
14.276235
CONSISTENT
12
543.415715
6.464942
14.276235
35⋅5-2⋅7-1
243/175
568.321670
P45,5,7
13
588.700357
20.378687
45.001321
INCONSISTENT
12
543.415715
-24.905956
-54.998679
5-1⋅71
7/5
582.512193
d575
13
588.700357
6.188165
13.665041
INCONSISTENT
12
543.415715
-39.096478
-86.334959
3-5⋅73
343/243
596.702715
d67,7,7
13
588.700357
-8.002358
-17.671239
INCONSISTENT
12
543.415715
-53.287001
-117.671239
33⋅19-1
27/19
608.351986
A419
13
588.700357
-19.651629
-43.395791
CONSISTENT
13
588.700357
-19.651629
-43.395791
35⋅13-2
243/169
628.719681
AA413,13
14
633.985000
5.265320
11.627164
CONSISTENT
14
633.985000
5.265320
11.627164
3-2⋅131
13/9
636.617660
d513
14
633.985000
-2.632660
-5.813582
CONSISTENT
14
633.985000
-2.632660
-5.813582
34⋅5-1⋅11-1
81/55
670.188347
P55,11
15
679.269643
9.081296
20.053809
INCONSISTENT
14
633.985000
-36.203347
-79.946191
3-4⋅112
121/81
694.815881
d511,11
15
679.269643
-15.546238
-34.330045
INCONSISTENT
16
724.554286
29.738405
65.669955
3-4⋅53
125/81
751.121138
A55,5,5
17
769.838929
18.717791
41.333639
INCONSISTENT
18
815.123572
64.002434
141.333639
7-1⋅111
11/7
782.492036
P5117
17
769.838929
-12.653107
-27.941276
INCONSISTENT
18
815.123572
32.631536
72.058724
33⋅17-1
27/17
800.909593
A517
18
815.123572
14.213979
31.388077
CONSISTENT
18
815.123572
14.213979
31.388077
31⋅71⋅13-1
21/13
830.253246
M6713
18
815.123572
-15.129674
-33.410165
CONSISTENT
18
815.123572
-15.129674
-33.410165
34⋅7-2
81/49
870.168191
A57,7
19
860.408215
-9.759976
-21.552507
INCONSISTENT
20
905.692858
35.524667
78.447493
3-1⋅51
5/3
884.358713
M65
20
905.692858
21.334145
47.111213
CONSISTENT
20
905.692858
21.334145
47.111213
35⋅11-1⋅13-1
243/143
917.929400
A611,13
20
905.692858
-12.236543
-27.021396
CONSISTENT
20
905.692858
-12.236543
-27.021396
3-4⋅111⋅131
143/81
984.025601
d711,13
22
996.262143
12.236543
27.021396
CONSISTENT
22
996.262143
12.236543
27.021396
32⋅5-1
9/5
1017.596288
m75
22
996.262143
-21.334145
-47.111213
CONSISTENT
22
996.262143
-21.334145
-47.111213
3-3⋅72
49/27
1031.786810
d87,7
23
1041.546786
9.759976
21.552507
INCONSISTENT
22
996.262143
-35.524667
-78.447493
7-1⋅131
13/7
1071.701755
m7137
24
1086.831429
15.129674
33.410165
CONSISTENT
24
1086.831429
15.129674
33.410165
3-2⋅171
17/9
1101.045408
d817
24
1086.831429
-14.213979
-31.388077
CONSISTENT
24
1086.831429
-14.213979
-31.388077
31⋅71⋅11-1
21/11
1119.462965
P8711
25
1132.116072
12.653107
27.941276
INCONSISTENT
24
1086.831429
-32.631536
-72.058724
35⋅5-3
243/125
1150.833863
d85,5,5
25
1132.116072
-18.717791
-41.333639
INCONSISTENT
24
1086.831429
-64.002434
-141.333639
35⋅11-2
243/121
1207.139120
cA111,11
27
1222.685358
15.546238
34.330045
INCONSISTENT
26
1177.400715
-29.738405
-65.669955
3-3⋅51⋅111
55/27
1231.766654
P85,11
27
1222.685358
-9.081296
-20.053809
INCONSISTENT
28
1267.970001
36.203347
79.946191
33⋅13-1
27/13
1265.337341
cA113
28
1267.970001
2.632660
5.813582
CONSISTENT
28
1267.970001
2.632660
5.813582
3-4⋅132
169/81
1273.235320
cd213,13
28
1267.970001
-5.265320
-11.627164
CONSISTENT
28
1267.970001
-5.265320
-11.627164
3-2⋅191
19/9
1293.603014
cm219
29
1313.254643
19.651629
43.395791
CONSISTENT
29
1313.254643
19.651629
43.395791
31⋅51⋅7-1
15/7
1319.442808
cA157
29
1313.254643
-6.188165
-13.665041
INCONSISTENT
30
1358.539286
39.096478
86.334959
3-4⋅52⋅71
175/81
1333.633331
cM25,5,7
29
1313.254643
-20.378687
-45.001321
INCONSISTENT
30
1358.539286
24.905956
54.998679
5-1⋅111
11/5
1365.004228
cm2115
30
1358.539286
-6.464942
-14.276235
CONSISTENT
30
1358.539286
-6.464942
-14.276235
34⋅5-1⋅7-1
81/35
1452.680383
cM25,7
32
1449.108572
-3.571811
-7.887467
CONSISTENT
32
1449.108572
-3.571811
-7.887467
3-1⋅71
7/3
1466.870906
cm37
32
1449.108572
-17.762334
-39.223746
CONSISTENT
32
1449.108572
-17.762334
-39.223746
3-3⋅51⋅131
65/27
1520.976373
cm35,13
34
1539.677858
18.701485
41.297631
CONSISTENT
34
1539.677858
18.701485
41.297631
33⋅11-1
27/11
1554.547060
cM311
34
1539.677858
-14.869202
-32.834978
CONSISTENT
34
1539.677858
-14.869202
-32.834978
32⋅5-2⋅71
63/25
1600.108480
cd475,5
35
1584.962501
-15.145980
-33.446172
INCONSISTENT
34
1539.677858
-60.430623
-133.446172
31⋅111⋅13-1
33/13
1612.745281
cM31113
36
1630.247144
17.501862
38.648559
CONSISTENT
36
1630.247144
17.501862
38.648559
3-2⋅231
23/9
1624.364346
cM323
36
1630.247144
5.882798
12.990713
CONSISTENT
36
1630.247144
5.882798
12.990713
5-1⋅131
13/5
1654.213948
cd4135
37
1675.531786
21.317839
47.075205
INCONSISTENT
36
1630.247144
-23.966804
-52.924795
34⋅31-1
81/31
1662.784431
cP431
37
1675.531786
12.747355
28.149400
CONSISTENT
37
1675.531786
12.747355
28.149400
35⋅7-1⋅13-1
243/91
1700.421436
cA37,13
38
1720.816429
20.394993
45.037328
CONSISTENT
38
1720.816429
20.394993
45.037328
33⋅51⋅7-2
135/49
1754.526904
cA357,7
39
1766.101072
11.574169
25.558706
INCONSISTENT
40
1811.385715
56.858812
125.558706
3-2⋅52
25/9
1768.717426
cA45,5
39
1766.101072
-2.616354
-5.777574
INCONSISTENT
40
1811.385715
42.668289
94.222426
34⋅29-1
81/29
1778.242809
cA429
39
1766.101072
-12.141737
-26.812041
CONSISTENT
39
1766.101072
-12.141737
-26.812041
3-3⋅71⋅111
77/27
1814.278846
cd57,11
40
1811.385715
-2.893131
-6.388769
CONSISTENT
40
1811.385715
-2.893131
-6.388769
31
3/1
1901.955001
cP5
42
1901.955001
0
0
CONSISTENT
42
1901.955001
0
0


Main article: JI intervals approximated by various scales