User:Contribution/JI intervals approximated by 39edt

From Xenharmonic Wiki
Jump to navigation Jump to search
This page is nominated for deletion.
Reason: These ratios are not relevant.
One of the operators will take care of it shortly.

39edt divides the tritave in 39 equal steps and the octave in 24.606260 equal steps of 48.768077 cents each. Its 31-limit patent val is <25 39 57 69 85 91 101 105 111 120 122|.

Factorization Ratio Value (¢) FJS Nearest
degree
Value (¢) Error (¢) Error (%) Consistency Consistent
degree
Value (¢) Error (¢) Error (%)
1/1
0
P1
0
0
0
0
CONSISTENT
0
0
0
0
3-5⋅51⋅72
245/243
14.190522
m25,7,7
0
0
-14.190522
-29.097974
CONSISTENT
0
0
-14.190522
-29.097974
34⋅7-1⋅11-1
81/77
87.676155
A17,11
2
97.536154
9.859999
20.218142
CONSISTENT
2
97.536154
9.859999
20.218142
3-3⋅291
29/27
123.712192
m229
3
146.304231
22.592039
46.325467
CONSISTENT
3
146.304231
22.592039
46.325467
33⋅5-2
27/25
133.237575
m25,5
3
146.304231
13.066656
26.793462
CONSISTENT
3
146.304231
13.066656
26.793462
3-2⋅5-1⋅72
49/45
147.428097
d37,75
3
146.304231
-1.123867
-2.304513
CONSISTENT
3
146.304231
-1.123867
-2.304513
3-4⋅71⋅131
91/81
201.533565
d37,13
4
195.072308
-6.461257
-13.248948
CONSISTENT
4
195.072308
-6.461257
-13.248948
3-3⋅311
31/27
239.170570
M231
5
243.840385
4.669815
9.575557
CONSISTENT
5
243.840385
4.669815
9.575557
31⋅51⋅13-1
15/13
247.741053
A2513
5
243.840385
-3.900668
-7.998405
CONSISTENT
5
243.840385
-3.900668
-7.998405
33⋅23-1
27/23
277.590655
m323
6
292.608462
15.017806
30.794338
CONSISTENT
6
292.608462
15.017806
30.794338
11-1⋅131
13/11
289.209719
m31311
6
292.608462
3.398742
6.969195
CONSISTENT
6
292.608462
3.398742
6.969195
3-1⋅52⋅7-1
25/21
301.846520
A25,57
6
292.608462
-9.238059
-18.942840
CONSISTENT
6
292.608462
-9.238059
-18.942840
3-2⋅111
11/9
347.407941
m311
7
341.376539
-6.031402
-12.367521
CONSISTENT
7
341.376539
-6.031402
-12.367521
34⋅5-1⋅13-1
81/65
380.978628
M35,13
8
390.144616
9.165988
18.795057
CONSISTENT
8
390.144616
9.165988
18.795057
32⋅7-1
9/7
435.084095
M37
9
438.912693
3.828597
7.850622
CONSISTENT
9
438.912693
3.828597
7.850622
3-3⋅51⋅71
35/27
449.274618
P45,7
9
438.912693
-10.361925
-21.247353
CONSISTENT
9
438.912693
-10.361925
-21.247353
31⋅51⋅11-1
15/11
536.950772
A4511
11
536.448846
-0.501926
-1.029210
CONSISTENT
11
536.448846
-0.501926
-1.029210
35⋅5-2⋅7-1
243/175
568.321670
P45,5,7
12
585.216923
16.895253
34.644083
CONSISTENT
12
585.216923
16.895253
34.644083
5-1⋅71
7/5
582.512193
d575
12
585.216923
2.704731
5.546109
CONSISTENT
12
585.216923
2.704731
5.546109
3-5⋅73
343/243
596.702715
d67,7,7
12
585.216923
-11.485792
-23.551865
CONSISTENT
12
585.216923
-11.485792
-23.551865
33⋅19-1
27/19
608.351986
A419
12
585.216923
-23.135063
-47.438949
CONSISTENT
12
585.216923
-23.135063
-47.438949
35⋅13-2
243/169
628.719681
AA413,13
13
633.985000
5.265320
10.796652
CONSISTENT
13
633.985000
5.265320
10.796652
3-2⋅131
13/9
636.617660
d513
13
633.985000
-2.632660
-5.398326
CONSISTENT
13
633.985000
-2.632660
-5.398326
34⋅5-1⋅11-1
81/55
670.188347
P55,11
14
682.753077
12.564730
25.764252
CONSISTENT
14
682.753077
12.564730
25.764252
3-4⋅112
121/81
694.815881
d511,11
14
682.753077
-12.062804
-24.735041
CONSISTENT
14
682.753077
-12.062804
-24.735041
3-4⋅53
125/81
751.121138
A55,5,5
15
731.521154
-19.599984
-40.190192
CONSISTENT
15
731.521154
-19.599984
-40.190192
7-1⋅111
11/7
782.492036
P5117
16
780.289231
-2.202805
-4.516899
CONSISTENT
16
780.289231
-2.202805
-4.516899
33⋅17-1
27/17
800.909593
A517
16
780.289231
-20.620362
-42.282500
CONSISTENT
16
780.289231
-20.620362
-42.282500
31⋅71⋅13-1
21/13
830.253246
M6713
17
829.057308
-1.195937
-2.452296
CONSISTENT
17
829.057308
-1.195937
-2.452296
34⋅7-2
81/49
870.168191
A57,7
18
877.825385
7.657194
15.701243
CONSISTENT
18
877.825385
7.657194
15.701243
3-1⋅51
5/3
884.358713
M65
18
877.825385
-6.533328
-13.396731
CONSISTENT
18
877.825385
-6.533328
-13.396731
35⋅11-1⋅13-1
243/143
917.929400
A611,13
19
926.593462
8.664062
17.765847
CONSISTENT
19
926.593462
8.664062
17.765847
3-4⋅111⋅131
143/81
984.025601
d711,13
20
975.361539
-8.664062
-17.765847
CONSISTENT
20
975.361539
-8.664062
-17.765847
32⋅5-1
9/5
1017.596288
m75
21
1024.129616
6.533328
13.396731
CONSISTENT
21
1024.129616
6.533328
13.396731
3-3⋅72
49/27
1031.786810
d87,7
21
1024.129616
-7.657194
-15.701243
CONSISTENT
21
1024.129616
-7.657194
-15.701243
7-1⋅131
13/7
1071.701755
m7137
22
1072.897693
1.195937
2.452296
CONSISTENT
22
1072.897693
1.195937
2.452296
3-2⋅171
17/9
1101.045408
d817
23
1121.665770
20.620362
42.282500
CONSISTENT
23
1121.665770
20.620362
42.282500
31⋅71⋅11-1
21/11
1119.462965
P8711
23
1121.665770
2.202805
4.516899
CONSISTENT
23
1121.665770
2.202805
4.516899
35⋅5-3
243/125
1150.833863
d85,5,5
24
1170.433847
19.599984
40.190192
CONSISTENT
24
1170.433847
19.599984
40.190192
35⋅11-2
243/121
1207.139120
cA111,11
25
1219.201924
12.062804
24.735041
CONSISTENT
25
1219.201924
12.062804
24.735041
3-3⋅51⋅111
55/27
1231.766654
P85,11
25
1219.201924
-12.564730
-25.764252
CONSISTENT
25
1219.201924
-12.564730
-25.764252
33⋅13-1
27/13
1265.337341
cA113
26
1267.970001
2.632660
5.398326
CONSISTENT
26
1267.970001
2.632660
5.398326
3-4⋅132
169/81
1273.235320
cd213,13
26
1267.970001
-5.265320
-10.796652
CONSISTENT
26
1267.970001
-5.265320
-10.796652
3-2⋅191
19/9
1293.603014
cm219
27
1316.738078
23.135063
47.438949
CONSISTENT
27
1316.738078
23.135063
47.438949
31⋅51⋅7-1
15/7
1319.442808
cA157
27
1316.738078
-2.704731
-5.546109
CONSISTENT
27
1316.738078
-2.704731
-5.546109
3-4⋅52⋅71
175/81
1333.633331
cM25,5,7
27
1316.738078
-16.895253
-34.644083
CONSISTENT
27
1316.738078
-16.895253
-34.644083
5-1⋅111
11/5
1365.004228
cm2115
28
1365.506154
0.501926
1.029210
CONSISTENT
28
1365.506154
0.501926
1.029210
34⋅5-1⋅7-1
81/35
1452.680383
cM25,7
30
1463.042308
10.361925
21.247353
CONSISTENT
30
1463.042308
10.361925
21.247353
3-1⋅71
7/3
1466.870906
cm37
30
1463.042308
-3.828597
-7.850622
CONSISTENT
30
1463.042308
-3.828597
-7.850622
3-3⋅51⋅131
65/27
1520.976373
cm35,13
31
1511.810385
-9.165988
-18.795057
CONSISTENT
31
1511.810385
-9.165988
-18.795057
33⋅11-1
27/11
1554.547060
cM311
32
1560.578462
6.031402
12.367521
CONSISTENT
32
1560.578462
6.031402
12.367521
32⋅5-2⋅71
63/25
1600.108480
cd475,5
33
1609.346539
9.238059
18.942840
CONSISTENT
33
1609.346539
9.238059
18.942840
31⋅111⋅13-1
33/13
1612.745281
cM31113
33
1609.346539
-3.398742
-6.969195
CONSISTENT
33
1609.346539
-3.398742
-6.969195
3-2⋅231
23/9
1624.364346
cM323
33
1609.346539
-15.017806
-30.794338
CONSISTENT
33
1609.346539
-15.017806
-30.794338
5-1⋅131
13/5
1654.213948
cd4135
34
1658.114616
3.900668
7.998405
CONSISTENT
34
1658.114616
3.900668
7.998405
34⋅31-1
81/31
1662.784431
cP431
34
1658.114616
-4.669815
-9.575557
CONSISTENT
34
1658.114616
-4.669815
-9.575557
35⋅7-1⋅13-1
243/91
1700.421436
cA37,13
35
1706.882693
6.461257
13.248948
CONSISTENT
35
1706.882693
6.461257
13.248948
33⋅51⋅7-2
135/49
1754.526904
cA357,7
36
1755.650770
1.123867
2.304513
CONSISTENT
36
1755.650770
1.123867
2.304513
3-2⋅52
25/9
1768.717426
cA45,5
36
1755.650770
-13.066656
-26.793462
CONSISTENT
36
1755.650770
-13.066656
-26.793462
34⋅29-1
81/29
1778.242809
cA429
36
1755.650770
-22.592039
-46.325467
CONSISTENT
36
1755.650770
-22.592039
-46.325467
3-3⋅71⋅111
77/27
1814.278846
cd57,11
37
1804.418847
-9.859999
-20.218142
CONSISTENT
37
1804.418847
-9.859999
-20.218142
31
3/1
1901.955001
cP5
39
1901.955001
0
0
CONSISTENT
39
1901.955001
0
0


Main article: JI intervals approximated by various scales