User:Contribution/JI intervals approximated by 21edt

From Xenharmonic Wiki
Jump to navigation Jump to search
This page is nominated for deletion.
Reason: These ratios are not relevant.
One of the operators will take care of it shortly.

21edt divides the tritave in 21 equal steps and the octave in 13.249525 equal steps of 90.569286 cents each. Its 31-limit patent val is <13 21 31 37 46 49 54 56 60 64 66|.

Factorization Ratio Value (¢) FJS Nearest
degree
Value (¢) Error (¢) Error (%) Consistency Consistent
degree
Value (¢) Error (¢) Error (%)
1/1
0
P1
0
0
0
0
CONSISTENT
0
0
0
0
3-5⋅51⋅72
245/243
14.190522
m25,7,7
0
0
-14.190522
-15.668140
CONSISTENT
0
0
-14.190522
-15.668140
34⋅7-1⋅11-1
81/77
87.676155
A17,11
1
90.569286
2.893131
3.194384
CONSISTENT
1
90.569286
2.893131
3.194384
3-3⋅291
29/27
123.712192
m229
1
90.569286
-33.142906
-36.593979
CONSISTENT
1
90.569286
-33.142906
-36.593979
33⋅5-2
27/25
133.237575
m25,5
1
90.569286
-42.668289
-47.111213
CONSISTENT
1
90.569286
-42.668289
-47.111213
3-2⋅5-1⋅72
49/45
147.428097
d37,75
2
181.138572
33.710474
37.220647
INCONSISTENT
1
90.569286
-56.858812
-62.779353
3-4⋅71⋅131
91/81
201.533565
d37,13
2
181.138572
-20.394993
-22.518664
CONSISTENT
2
181.138572
-20.394993
-22.518664
3-3⋅311
31/27
239.170570
M231
3
271.707857
32.537287
35.925300
CONSISTENT
3
271.707857
32.537287
35.925300
31⋅51⋅13-1
15/13
247.741053
A2513
3
271.707857
23.966804
26.462397
CONSISTENT
3
271.707857
23.966804
26.462397
33⋅23-1
27/23
277.590655
m323
3
271.707857
-5.882798
-6.495357
CONSISTENT
3
271.707857
-5.882798
-6.495357
11-1⋅131
13/11
289.209719
m31311
3
271.707857
-17.501862
-19.324280
CONSISTENT
3
271.707857
-17.501862
-19.324280
3-1⋅52⋅7-1
25/21
301.846520
A25,57
3
271.707857
-30.138663
-33.276914
INCONSISTENT
4
362.277143
60.430623
66.723086
3-2⋅111
11/9
347.407941
m311
4
362.277143
14.869202
16.417489
CONSISTENT
4
362.277143
14.869202
16.417489
34⋅5-1⋅13-1
81/65
380.978628
M35,13
4
362.277143
-18.701485
-20.648816
CONSISTENT
4
362.277143
-18.701485
-20.648816
32⋅7-1
9/7
435.084095
M37
5
452.846429
17.762334
19.611873
CONSISTENT
5
452.846429
17.762334
19.611873
3-3⋅51⋅71
35/27
449.274618
P45,7
5
452.846429
3.571811
3.943733
CONSISTENT
5
452.846429
3.571811
3.943733
31⋅51⋅11-1
15/11
536.950772
A4511
6
543.415715
6.464942
7.138118
CONSISTENT
6
543.415715
6.464942
7.138118
35⋅5-2⋅7-1
243/175
568.321670
P45,5,7
6
543.415715
-24.905956
-27.499340
CONSISTENT
6
543.415715
-24.905956
-27.499340
5-1⋅71
7/5
582.512193
d575
6
543.415715
-39.096478
-43.167480
CONSISTENT
6
543.415715
-39.096478
-43.167480
3-5⋅73
343/243
596.702715
d67,7,7
7
633.985000
37.282285
41.164380
INCONSISTENT
6
543.415715
-53.287001
-58.835620
33⋅19-1
27/19
608.351986
A419
7
633.985000
25.633014
28.302104
CONSISTENT
7
633.985000
25.633014
28.302104
35⋅13-2
243/169
628.719681
AA413,13
7
633.985000
5.265320
5.813582
CONSISTENT
7
633.985000
5.265320
5.813582
3-2⋅131
13/9
636.617660
d513
7
633.985000
-2.632660
-2.906791
CONSISTENT
7
633.985000
-2.632660
-2.906791
34⋅5-1⋅11-1
81/55
670.188347
P55,11
7
633.985000
-36.203347
-39.973095
CONSISTENT
7
633.985000
-36.203347
-39.973095
3-4⋅112
121/81
694.815881
d511,11
8
724.554286
29.738405
32.834978
CONSISTENT
8
724.554286
29.738405
32.834978
3-4⋅53
125/81
751.121138
A55,5,5
8
724.554286
-26.566852
-29.333181
INCONSISTENT
9
815.123572
64.002434
70.666819
7-1⋅111
11/7
782.492036
P5117
9
815.123572
32.631536
36.029362
CONSISTENT
9
815.123572
32.631536
36.029362
33⋅17-1
27/17
800.909593
A517
9
815.123572
14.213979
15.694039
CONSISTENT
9
815.123572
14.213979
15.694039
31⋅71⋅13-1
21/13
830.253246
M6713
9
815.123572
-15.129674
-16.705082
CONSISTENT
9
815.123572
-15.129674
-16.705082
34⋅7-2
81/49
870.168191
A57,7
10
905.692858
35.524667
39.223746
CONSISTENT
10
905.692858
35.524667
39.223746
3-1⋅51
5/3
884.358713
M65
10
905.692858
21.334145
23.555606
CONSISTENT
10
905.692858
21.334145
23.555606
35⋅11-1⋅13-1
243/143
917.929400
A611,13
10
905.692858
-12.236543
-13.510698
CONSISTENT
10
905.692858
-12.236543
-13.510698
3-4⋅111⋅131
143/81
984.025601
d711,13
11
996.262143
12.236543
13.510698
CONSISTENT
11
996.262143
12.236543
13.510698
32⋅5-1
9/5
1017.596288
m75
11
996.262143
-21.334145
-23.555606
CONSISTENT
11
996.262143
-21.334145
-23.555606
3-3⋅72
49/27
1031.786810
d87,7
11
996.262143
-35.524667
-39.223746
CONSISTENT
11
996.262143
-35.524667
-39.223746
7-1⋅131
13/7
1071.701755
m7137
12
1086.831429
15.129674
16.705082
CONSISTENT
12
1086.831429
15.129674
16.705082
3-2⋅171
17/9
1101.045408
d817
12
1086.831429
-14.213979
-15.694039
CONSISTENT
12
1086.831429
-14.213979
-15.694039
31⋅71⋅11-1
21/11
1119.462965
P8711
12
1086.831429
-32.631536
-36.029362
CONSISTENT
12
1086.831429
-32.631536
-36.029362
35⋅5-3
243/125
1150.833863
d85,5,5
13
1177.400715
26.566852
29.333181
INCONSISTENT
12
1086.831429
-64.002434
-70.666819
35⋅11-2
243/121
1207.139120
cA111,11
13
1177.400715
-29.738405
-32.834978
CONSISTENT
13
1177.400715
-29.738405
-32.834978
3-3⋅51⋅111
55/27
1231.766654
P85,11
14
1267.970001
36.203347
39.973095
CONSISTENT
14
1267.970001
36.203347
39.973095
33⋅13-1
27/13
1265.337341
cA113
14
1267.970001
2.632660
2.906791
CONSISTENT
14
1267.970001
2.632660
2.906791
3-4⋅132
169/81
1273.235320
cd213,13
14
1267.970001
-5.265320
-5.813582
CONSISTENT
14
1267.970001
-5.265320
-5.813582
3-2⋅191
19/9
1293.603014
cm219
14
1267.970001
-25.633014
-28.302104
CONSISTENT
14
1267.970001
-25.633014
-28.302104
31⋅51⋅7-1
15/7
1319.442808
cA157
15
1358.539286
39.096478
43.167480
CONSISTENT
15
1358.539286
39.096478
43.167480
3-4⋅52⋅71
175/81
1333.633331
cM25,5,7
15
1358.539286
24.905956
27.499340
CONSISTENT
15
1358.539286
24.905956
27.499340
5-1⋅111
11/5
1365.004228
cm2115
15
1358.539286
-6.464942
-7.138118
CONSISTENT
15
1358.539286
-6.464942
-7.138118
34⋅5-1⋅7-1
81/35
1452.680383
cM25,7
16
1449.108572
-3.571811
-3.943733
CONSISTENT
16
1449.108572
-3.571811
-3.943733
3-1⋅71
7/3
1466.870906
cm37
16
1449.108572
-17.762334
-19.611873
CONSISTENT
16
1449.108572
-17.762334
-19.611873
3-3⋅51⋅131
65/27
1520.976373
cm35,13
17
1539.677858
18.701485
20.648816
CONSISTENT
17
1539.677858
18.701485
20.648816
33⋅11-1
27/11
1554.547060
cM311
17
1539.677858
-14.869202
-16.417489
CONSISTENT
17
1539.677858
-14.869202
-16.417489
32⋅5-2⋅71
63/25
1600.108480
cd475,5
18
1630.247144
30.138663
33.276914
INCONSISTENT
17
1539.677858
-60.430623
-66.723086
31⋅111⋅13-1
33/13
1612.745281
cM31113
18
1630.247144
17.501862
19.324280
CONSISTENT
18
1630.247144
17.501862
19.324280
3-2⋅231
23/9
1624.364346
cM323
18
1630.247144
5.882798
6.495357
CONSISTENT
18
1630.247144
5.882798
6.495357
5-1⋅131
13/5
1654.213948
cd4135
18
1630.247144
-23.966804
-26.462397
CONSISTENT
18
1630.247144
-23.966804
-26.462397
34⋅31-1
81/31
1662.784431
cP431
18
1630.247144
-32.537287
-35.925300
CONSISTENT
18
1630.247144
-32.537287
-35.925300
35⋅7-1⋅13-1
243/91
1700.421436
cA37,13
19
1720.816429
20.394993
22.518664
CONSISTENT
19
1720.816429
20.394993
22.518664
33⋅51⋅7-2
135/49
1754.526904
cA357,7
19
1720.816429
-33.710474
-37.220647
INCONSISTENT
20
1811.385715
56.858812
62.779353
3-2⋅52
25/9
1768.717426
cA45,5
20
1811.385715
42.668289
47.111213
CONSISTENT
20
1811.385715
42.668289
47.111213
34⋅29-1
81/29
1778.242809
cA429
20
1811.385715
33.142906
36.593979
CONSISTENT
20
1811.385715
33.142906
36.593979
3-3⋅71⋅111
77/27
1814.278846
cd57,11
20
1811.385715
-2.893131
-3.194384
CONSISTENT
20
1811.385715
-2.893131
-3.194384
31
3/1
1901.955001
cP5
21
1901.955001
0
0
CONSISTENT
21
1901.955001
0
0


Main article: JI intervals approximated by various scales