User:Contribution/JI intervals approximated by 1edt

From Xenharmonic Wiki
Jump to navigation Jump to search
This page is nominated for deletion.
Reason: These ratios are not relevant.
One of the operators will take care of it shortly.

1edt divides the tritave in 1 equal step and the octave in 0.630930 equal step of 1901.955001 cents. Its 31-limit patent val is <1 1 1 2 2 2 3 3 3 3 3|.

Factorization Ratio Value (¢) FJS Nearest
degree
Value (¢) Error (¢) Error (%) Consistency Consistent
degree
Value (¢) Error (¢) Error (%)
1/1
0
P1
0
0
0
0
CONSISTENT
0
0
0
0
3-5⋅51⋅72
245/243
14.190522
m25,7,7
0
0
-14.190522
-0.746102
CONSISTENT
0
0
-14.190522
-0.746102
34⋅7-1⋅11-1
81/77
87.676155
A17,11
0
0
-87.676155
-4.609791
CONSISTENT
0
0
-87.676155
-4.609791
3-3⋅291
29/27
123.712192
m229
0
0
-123.712192
-6.504475
CONSISTENT
0
0
-123.712192
-6.504475
33⋅5-2
27/25
133.237575
m25,5
0
0
-133.237575
-7.005296
INCONSISTENT
1
1901.955001
1768.717426
92.994704
3-2⋅5-1⋅72
49/45
147.428097
d37,75
0
0
-147.428097
-7.751398
INCONSISTENT
1
1901.955001
1754.526904
92.248602
3-4⋅71⋅131
91/81
201.533565
d37,13
0
0
-201.533565
-10.596127
CONSISTENT
0
0
-201.533565
-10.596127
3-3⋅311
31/27
239.170570
M231
0
0
-239.170570
-12.574986
CONSISTENT
0
0
-239.170570
-12.574986
31⋅51⋅13-1
15/13
247.741053
A2513
0
0
-247.741053
-13.025600
CONSISTENT
0
0
-247.741053
-13.025600
33⋅23-1
27/23
277.590655
m323
0
0
-277.590655
-14.595017
CONSISTENT
0
0
-277.590655
-14.595017
11-1⋅131
13/11
289.209719
m31311
0
0
-289.209719
-15.205918
CONSISTENT
0
0
-289.209719
-15.205918
3-1⋅52⋅7-1
25/21
301.846520
A25,57
0
0
-301.846520
-15.870329
INCONSISTENT
-1
-1901.955001
-2203.801521
-115.870329
3-2⋅111
11/9
347.407941
m311
0
0
-347.407941
-18.265834
CONSISTENT
0
0
-347.407941
-18.265834
34⋅5-1⋅13-1
81/65
380.978628
M35,13
0
0
-380.978628
-20.030896
INCONSISTENT
1
1901.955001
1520.976373
79.969104
32⋅7-1
9/7
435.084095
M37
0
0
-435.084095
-22.875625
CONSISTENT
0
0
-435.084095
-22.875625
3-3⋅51⋅71
35/27
449.274618
P45,7
0
0
-449.274618
-23.621727
CONSISTENT
0
0
-449.274618
-23.621727
31⋅51⋅11-1
15/11
536.950772
A4511
0
0
-536.950772
-28.231518
CONSISTENT
0
0
-536.950772
-28.231518
35⋅5-2⋅7-1
243/175
568.321670
P45,5,7
0
0
-568.321670
-29.880921
INCONSISTENT
1
1901.955001
1333.633331
70.119079
5-1⋅71
7/5
582.512193
d575
0
0
-582.512193
-30.627023
INCONSISTENT
1
1901.955001
1319.442808
69.372977
3-5⋅73
343/243
596.702715
d67,7,7
0
0
-596.702715
-31.373125
INCONSISTENT
1
1901.955001
1305.252286
68.626875
33⋅19-1
27/19
608.351986
A419
0
0
-608.351986
-31.985614
CONSISTENT
0
0
-608.351986
-31.985614
35⋅13-2
243/169
628.719681
AA413,13
0
0
-628.719681
-33.056496
INCONSISTENT
1
1901.955001
1273.235320
66.943504
3-2⋅131
13/9
636.617660
d513
0
0
-636.617660
-33.471752
CONSISTENT
0
0
-636.617660
-33.471752
34⋅5-1⋅11-1
81/55
670.188347
P55,11
0
0
-670.188347
-35.236814
INCONSISTENT
1
1901.955001
1231.766654
64.763186
3-4⋅112
121/81
694.815881
d511,11
0
0
-694.815881
-36.531668
CONSISTENT
0
0
-694.815881
-36.531668
3-4⋅53
125/81
751.121138
A55,5,5
0
0
-751.121138
-39.492056
INCONSISTENT
-1
-1901.955001
-2653.076139
-139.492056
7-1⋅111
11/7
782.492036
P5117
0
0
-782.492036
-41.141459
CONSISTENT
0
0
-782.492036
-41.141459
33⋅17-1
27/17
800.909593
A517
0
0
-800.909593
-42.109808
CONSISTENT
0
0
-800.909593
-42.109808
31⋅71⋅13-1
21/13
830.253246
M6713
0
0
-830.253246
-43.652623
INCONSISTENT
1
1901.955001
1071.701755
56.347377
34⋅7-2
81/49
870.168191
A57,7
0
0
-870.168191
-45.751250
CONSISTENT
0
0
-870.168191
-45.751250
3-1⋅51
5/3
884.358713
M65
0
0
-884.358713
-46.497352
CONSISTENT
0
0
-884.358713
-46.497352
35⋅11-1⋅13-1
243/143
917.929400
A611,13
0
0
-917.929400
-48.262414
INCONSISTENT
1
1901.955001
984.025601
51.737586
3-4⋅111⋅131
143/81
984.025601
d711,13
1
1901.955001
917.929400
48.262414
INCONSISTENT
0
0
-984.025601
-51.737586
32⋅5-1
9/5
1017.596288
m75
1
1901.955001
884.358713
46.497352
CONSISTENT
1
1901.955001
884.358713
46.497352
3-3⋅72
49/27
1031.786810
d87,7
1
1901.955001
870.168191
45.751250
CONSISTENT
1
1901.955001
870.168191
45.751250
7-1⋅131
13/7
1071.701755
m7137
1
1901.955001
830.253246
43.652623
INCONSISTENT
0
0
-1071.701755
-56.347377
3-2⋅171
17/9
1101.045408
d817
1
1901.955001
800.909593
42.109808
CONSISTENT
1
1901.955001
800.909593
42.109808
31⋅71⋅11-1
21/11
1119.462965
P8711
1
1901.955001
782.492036
41.141459
CONSISTENT
1
1901.955001
782.492036
41.141459
35⋅5-3
243/125
1150.833863
d85,5,5
1
1901.955001
751.121138
39.492056
INCONSISTENT
2
3803.910002
2653.076139
139.492056
35⋅11-2
243/121
1207.139120
cA111,11
1
1901.955001
694.815881
36.531668
CONSISTENT
1
1901.955001
694.815881
36.531668
3-3⋅51⋅111
55/27
1231.766654
P85,11
1
1901.955001
670.188347
35.236814
INCONSISTENT
0
0
-1231.766654
-64.763186
33⋅13-1
27/13
1265.337341
cA113
1
1901.955001
636.617660
33.471752
CONSISTENT
1
1901.955001
636.617660
33.471752
3-4⋅132
169/81
1273.235320
cd213,13
1
1901.955001
628.719681
33.056496
INCONSISTENT
0
0
-1273.235320
-66.943504
3-2⋅191
19/9
1293.603014
cm219
1
1901.955001
608.351986
31.985614
CONSISTENT
1
1901.955001
608.351986
31.985614
31⋅51⋅7-1
15/7
1319.442808
cA157
1
1901.955001
582.512193
30.627023
INCONSISTENT
0
0
-1319.442808
-69.372977
3-4⋅52⋅71
175/81
1333.633331
cM25,5,7
1
1901.955001
568.321670
29.880921
INCONSISTENT
0
0
-1333.633331
-70.119079
5-1⋅111
11/5
1365.004228
cm2115
1
1901.955001
536.950772
28.231518
CONSISTENT
1
1901.955001
536.950772
28.231518
34⋅5-1⋅7-1
81/35
1452.680383
cM25,7
1
1901.955001
449.274618
23.621727
CONSISTENT
1
1901.955001
449.274618
23.621727
3-1⋅71
7/3
1466.870906
cm37
1
1901.955001
435.084095
22.875625
CONSISTENT
1
1901.955001
435.084095
22.875625
3-3⋅51⋅131
65/27
1520.976373
cm35,13
1
1901.955001
380.978628
20.030896
INCONSISTENT
0
0
-1520.976373
-79.969104
33⋅11-1
27/11
1554.547060
cM311
1
1901.955001
347.407941
18.265834
CONSISTENT
1
1901.955001
347.407941
18.265834
32⋅5-2⋅71
63/25
1600.108480
cd475,5
1
1901.955001
301.846520
15.870329
INCONSISTENT
2
3803.910002
2203.801521
115.870329
31⋅111⋅13-1
33/13
1612.745281
cM31113
1
1901.955001
289.209719
15.205918
CONSISTENT
1
1901.955001
289.209719
15.205918
3-2⋅231
23/9
1624.364346
cM323
1
1901.955001
277.590655
14.595017
CONSISTENT
1
1901.955001
277.590655
14.595017
5-1⋅131
13/5
1654.213948
cd4135
1
1901.955001
247.741053
13.025600
CONSISTENT
1
1901.955001
247.741053
13.025600
34⋅31-1
81/31
1662.784431
cP431
1
1901.955001
239.170570
12.574986
CONSISTENT
1
1901.955001
239.170570
12.574986
35⋅7-1⋅13-1
243/91
1700.421436
cA37,13
1
1901.955001
201.533565
10.596127
CONSISTENT
1
1901.955001
201.533565
10.596127
33⋅51⋅7-2
135/49
1754.526904
cA357,7
1
1901.955001
147.428097
7.751398
INCONSISTENT
0
0
-1754.526904
-92.248602
3-2⋅52
25/9
1768.717426
cA45,5
1
1901.955001
133.237575
7.005296
INCONSISTENT
0
0
-1768.717426
-92.994704
34⋅29-1
81/29
1778.242809
cA429
1
1901.955001
123.712192
6.504475
CONSISTENT
1
1901.955001
123.712192
6.504475
3-3⋅71⋅111
77/27
1814.278846
cd57,11
1
1901.955001
87.676155
4.609791
CONSISTENT
1
1901.955001
87.676155
4.609791
31
3/1
1901.955001
cP5
1
1901.955001
0
0
CONSISTENT
1
1901.955001
0
0


Main article: JI intervals approximated by various scales