User:Contribution/JI intervals approximated by 18edt

From Xenharmonic Wiki
Jump to navigation Jump to search
This page is nominated for deletion.
Reason: These ratios are not relevant.
One of the operators will take care of it shortly.

18edt divides the tritave in 18 equal steps and the octave in 11.356736 equal steps of 105.664167 cents each. Its 31-limit patent val is <11 18 26 32 39 42 46 48 51 55 56|.

Factorization Ratio Value (¢) FJS Nearest
degree
Value (¢) Error (¢) Error (%) Consistency Consistent
degree
Value (¢) Error (¢) Error (%)
1/1
0
P1
0
0
0
0
CONSISTENT
0
0
0
0
3-5⋅51⋅72
245/243
14.190522
m25,7,7
0
0
-14.190522
-13.429834
CONSISTENT
0
0
-14.190522
-13.429834
34⋅7-1⋅11-1
81/77
87.676155
A17,11
1
105.664167
17.988012
17.023758
CONSISTENT
1
105.664167
17.988012
17.023758
3-3⋅291
29/27
123.712192
m229
1
105.664167
-18.048025
-17.080554
CONSISTENT
1
105.664167
-18.048025
-17.080554
33⋅5-2
27/25
133.237575
m25,5
1
105.664167
-27.573408
-26.095325
INCONSISTENT
2
211.328333
78.090759
73.904675
3-2⋅5-1⋅72
49/45
147.428097
d37,75
1
105.664167
-41.763931
-39.525160
INCONSISTENT
2
211.328333
63.900236
60.474840
3-4⋅71⋅131
91/81
201.533565
d37,13
2
211.328333
9.794769
9.269716
CONSISTENT
2
211.328333
9.794769
9.269716
3-3⋅311
31/27
239.170570
M231
2
211.328333
-27.842236
-26.349743
CONSISTENT
2
211.328333
-27.842236
-26.349743
31⋅51⋅13-1
15/13
247.741053
A2513
2
211.328333
-36.412720
-34.460802
CONSISTENT
2
211.328333
-36.412720
-34.460802
33⋅23-1
27/23
277.590655
m323
3
316.992500
39.401845
37.289694
CONSISTENT
3
316.992500
39.401845
37.289694
11-1⋅131
13/11
289.209719
m31311
3
316.992500
27.782781
26.293475
CONSISTENT
3
316.992500
27.782781
26.293475
3-1⋅52⋅7-1
25/21
301.846520
A25,57
3
316.992500
15.145980
14.334074
INCONSISTENT
2
211.328333
-90.518187
-85.665926
3-2⋅111
11/9
347.407941
m311
3
316.992500
-30.415440
-28.785010
CONSISTENT
3
316.992500
-30.415440
-28.785010
34⋅5-1⋅13-1
81/65
380.978628
M35,13
4
422.656667
41.678039
39.443872
CONSISTENT
4
422.656667
41.678039
39.443872
32⋅7-1
9/7
435.084095
M37
4
422.656667
-12.427428
-11.761252
CONSISTENT
4
422.656667
-12.427428
-11.761252
3-3⋅51⋅71
35/27
449.274618
P45,7
4
422.656667
-26.617951
-25.191086
CONSISTENT
4
422.656667
-26.617951
-25.191086
31⋅51⋅11-1
15/11
536.950772
A4511
5
528.320834
-8.629939
-8.167328
CONSISTENT
5
528.320834
-8.629939
-8.167328
35⋅5-2⋅7-1
243/175
568.321670
P45,5,7
5
528.320834
-40.000837
-37.856577
INCONSISTENT
6
633.985000
65.663330
62.143423
5-1⋅71
7/5
582.512193
d575
6
633.985000
51.472808
48.713589
CONSISTENT
6
633.985000
51.472808
48.713589
3-5⋅73
343/243
596.702715
d67,7,7
6
633.985000
37.282285
35.283755
CONSISTENT
6
633.985000
37.282285
35.283755
33⋅19-1
27/19
608.351986
A419
6
633.985000
25.633014
24.258947
CONSISTENT
6
633.985000
25.633014
24.258947
35⋅13-2
243/169
628.719681
AA413,13
6
633.985000
5.265320
4.983070
CONSISTENT
6
633.985000
5.265320
4.983070
3-2⋅131
13/9
636.617660
d513
6
633.985000
-2.632660
-2.491535
CONSISTENT
6
633.985000
-2.632660
-2.491535
34⋅5-1⋅11-1
81/55
670.188347
P55,11
6
633.985000
-36.203347
-34.262653
INCONSISTENT
7
739.649167
69.460820
65.737347
3-4⋅112
121/81
694.815881
d511,11
7
739.649167
44.833286
42.429981
INCONSISTENT
6
633.985000
-60.830881
-57.570019
3-4⋅53
125/81
751.121138
A55,5,5
7
739.649167
-11.471971
-10.857012
INCONSISTENT
6
633.985000
-117.136138
-110.857012
7-1⋅111
11/7
782.492036
P5117
7
739.649167
-42.842869
-40.546261
CONSISTENT
7
739.649167
-42.842869
-40.546261
33⋅17-1
27/17
800.909593
A517
8
845.313334
44.403741
42.023462
CONSISTENT
8
845.313334
44.403741
42.023462
31⋅71⋅13-1
21/13
830.253246
M6713
8
845.313334
15.060088
14.252787
CONSISTENT
8
845.313334
15.060088
14.252787
34⋅7-2
81/49
870.168191
A57,7
8
845.313334
-24.854857
-23.522503
CONSISTENT
8
845.313334
-24.854857
-23.522503
3-1⋅51
5/3
884.358713
M65
8
845.313334
-39.045379
-36.952337
CONSISTENT
8
845.313334
-39.045379
-36.952337
35⋅11-1⋅13-1
243/143
917.929400
A611,13
9
950.977500
33.048100
31.276545
CONSISTENT
9
950.977500
33.048100
31.276545
3-4⋅111⋅131
143/81
984.025601
d711,13
9
950.977500
-33.048100
-31.276545
CONSISTENT
9
950.977500
-33.048100
-31.276545
32⋅5-1
9/5
1017.596288
m75
10
1056.641667
39.045379
36.952337
CONSISTENT
10
1056.641667
39.045379
36.952337
3-3⋅72
49/27
1031.786810
d87,7
10
1056.641667
24.854857
23.522503
CONSISTENT
10
1056.641667
24.854857
23.522503
7-1⋅131
13/7
1071.701755
m7137
10
1056.641667
-15.060088
-14.252787
CONSISTENT
10
1056.641667
-15.060088
-14.252787
3-2⋅171
17/9
1101.045408
d817
10
1056.641667
-44.403741
-42.023462
CONSISTENT
10
1056.641667
-44.403741
-42.023462
31⋅71⋅11-1
21/11
1119.462965
P8711
11
1162.305834
42.842869
40.546261
CONSISTENT
11
1162.305834
42.842869
40.546261
35⋅5-3
243/125
1150.833863
d85,5,5
11
1162.305834
11.471971
10.857012
INCONSISTENT
12
1267.970001
117.136138
110.857012
35⋅11-2
243/121
1207.139120
cA111,11
11
1162.305834
-44.833286
-42.429981
INCONSISTENT
12
1267.970001
60.830881
57.570019
3-3⋅51⋅111
55/27
1231.766654
P85,11
12
1267.970001
36.203347
34.262653
INCONSISTENT
11
1162.305834
-69.460820
-65.737347
33⋅13-1
27/13
1265.337341
cA113
12
1267.970001
2.632660
2.491535
CONSISTENT
12
1267.970001
2.632660
2.491535
3-4⋅132
169/81
1273.235320
cd213,13
12
1267.970001
-5.265320
-4.983070
CONSISTENT
12
1267.970001
-5.265320
-4.983070
3-2⋅191
19/9
1293.603014
cm219
12
1267.970001
-25.633014
-24.258947
CONSISTENT
12
1267.970001
-25.633014
-24.258947
31⋅51⋅7-1
15/7
1319.442808
cA157
12
1267.970001
-51.472808
-48.713589
CONSISTENT
12
1267.970001
-51.472808
-48.713589
3-4⋅52⋅71
175/81
1333.633331
cM25,5,7
13
1373.634167
40.000837
37.856577
INCONSISTENT
12
1267.970001
-65.663330
-62.143423
5-1⋅111
11/5
1365.004228
cm2115
13
1373.634167
8.629939
8.167328
CONSISTENT
13
1373.634167
8.629939
8.167328
34⋅5-1⋅7-1
81/35
1452.680383
cM25,7
14
1479.298334
26.617951
25.191086
CONSISTENT
14
1479.298334
26.617951
25.191086
3-1⋅71
7/3
1466.870906
cm37
14
1479.298334
12.427428
11.761252
CONSISTENT
14
1479.298334
12.427428
11.761252
3-3⋅51⋅131
65/27
1520.976373
cm35,13
14
1479.298334
-41.678039
-39.443872
CONSISTENT
14
1479.298334
-41.678039
-39.443872
33⋅11-1
27/11
1554.547060
cM311
15
1584.962501
30.415440
28.785010
CONSISTENT
15
1584.962501
30.415440
28.785010
32⋅5-2⋅71
63/25
1600.108480
cd475,5
15
1584.962501
-15.145980
-14.334074
INCONSISTENT
16
1690.626667
90.518187
85.665926
31⋅111⋅13-1
33/13
1612.745281
cM31113
15
1584.962501
-27.782781
-26.293475
CONSISTENT
15
1584.962501
-27.782781
-26.293475
3-2⋅231
23/9
1624.364346
cM323
15
1584.962501
-39.401845
-37.289694
CONSISTENT
15
1584.962501
-39.401845
-37.289694
5-1⋅131
13/5
1654.213948
cd4135
16
1690.626667
36.412720
34.460802
CONSISTENT
16
1690.626667
36.412720
34.460802
34⋅31-1
81/31
1662.784431
cP431
16
1690.626667
27.842236
26.349743
CONSISTENT
16
1690.626667
27.842236
26.349743
35⋅7-1⋅13-1
243/91
1700.421436
cA37,13
16
1690.626667
-9.794769
-9.269716
CONSISTENT
16
1690.626667
-9.794769
-9.269716
33⋅51⋅7-2
135/49
1754.526904
cA357,7
17
1796.290834
41.763931
39.525160
INCONSISTENT
16
1690.626667
-63.900236
-60.474840
3-2⋅52
25/9
1768.717426
cA45,5
17
1796.290834
27.573408
26.095325
INCONSISTENT
16
1690.626667
-78.090759
-73.904675
34⋅29-1
81/29
1778.242809
cA429
17
1796.290834
18.048025
17.080554
CONSISTENT
17
1796.290834
18.048025
17.080554
3-3⋅71⋅111
77/27
1814.278846
cd57,11
17
1796.290834
-17.988012
-17.023758
CONSISTENT
17
1796.290834
-17.988012
-17.023758
31
3/1
1901.955001
cP5
18
1901.955001
0
0
CONSISTENT
18
1901.955001
0
0


Main article: JI intervals approximated by various scales