Table of 31edo intervals

From Xenharmonic Wiki
Jump to navigation Jump to search

Below is a table of (important) intervals consistently represented in 31edo. Intervals are found significantly, though not exclusively, in the 2.3.5.7.11.23 and 2.5.7.13.17.19.29.31 subgroups.

Step Cents 3-limit 5-limit 7-limit 11-limit 13-limit 17-limit 19-limit 23-limit 29-limit 31-limit
1 38.71 128/125 36/35, 49/48,
50/49, 64/63
33/32, 45/44,
55/54, 56/55
40/39, 65/64 35/34 39/38 46/45 32/31
2 77.42 25/24 21/20, 28/27 22/21 68/65 20/19 23/22
3 116.13 16/15 15/14 77/72, 128/121 14/13 17/16 31/29
4 154.84 35/32 12/11, 11/10 (13/12) 23/21 32/29
5 193.55 9/8 10/9 28/25 55/49 (39/35) 19/17 29/26
6 232.26 144/125 8/7 25/22, 55/48 15/13 17/15
7 270.97 75/64 7/6 64/55 20/17
8 309.68 32/27 6/5 25/21 77/64 19/16
9 348.39 49/40 11/9, 27/22 16/13, 39/32
10 387.1 5/4 96/77
11 425.81 32/25 9/7 14/11 23/18
12 464.52 125/96 21/16, 64/49 33/25 13/10 17/13
13 503.23 4/3 27/20 162/121 35/26 85/64 128/95
14 541.94 48/35, 49/36 11/8, 15/11 26/19
15 580.65 45/32, 25/18 7/5 108/77 24/17 32/23
16 619.35 64/45, 36/25 10/7 77/54 17/12 23/16
17 658.06 35/24, 72/49 16/11, 22/15 19/13
18 696.77 3/2 40/27 121/81 52/35 128/85 95/64
19 735.48 192/125 32/21, 49/32 50/33 20/13 26/17
20 774.19 25/16 14/9 11/7 36/23
21 812.9 8/5 77/48
22 851.61 49/30 18/11, 44/27 13/8, 64/39
23 890.32 27/16 5/3 42/25 128/77 32/19
24 929.03 128/75 12/7 55/32 17/10
25 967.74 125/72 7/4 96/55 26/15 30/17
26 1006.45 16/9 9/5 25/14 98/55 52/29
27 1045.16 64/35 11/6, 20/11 24/13 42/23 29/16
28 1083.87 15/8 28/15 144/77, 121/64 13/7 32/17 58/31
29 1122.58 48/25 27/14, 40/21 21/11 65/34 19/10 44/23
30 1161.29 125/64 49/25, 35/18 88/45, 64/33 39/20 45/23 31/16
31 1200 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1 2/1