Redbull

From Xenharmonic Wiki
Jump to navigation Jump to search
An illustration of the structure of the Redbull scale.

The Redbull scale[idiosyncratic term] is a 16-tone fractal scale obtained by recursively dividing one octave on the logarithmic scale (1200 ¢) with a 1:√3 ratio.

Theory

400 ¢ is the most commonly used approximation to 5/4, mainly due to its use in 12edo. This interval is also expressed as 1\3, and its square root on the logarithmic scale, ≈692.82 ¢ (hereinafter expressed as 1\√3 for convenience), functions as an approximation of 3/2. (The comma between these two intervals is called as Caffeinterval.) Furthermore, the interval divided into √3 equal parts with 1\√3 as the center[clarification needed] is ≈985.641¢, which works as an approximation of 7/4 or 9/5, and the tetrad that combines these is 4:5:6:7, the so-called It will be the C7. Applying this property, the scale that is created as a result of recursively dividing those intervals furthermore twice is Redbull.

Most of the notes on this scale are irrational numbers in both cent and frequency units, so Redbull cannot be reproduced with an edo. Also, since there is no interval that can be called a generator, it is also impossible to approximate Redbull with a mos scale. Also, since there is no interval that can be called a generator, and it varies even by one step­[clarification needed], there are many intervals within Redbull that approximate just intonation, just like afdos.

Intervals

For more precise cent values, refer to the Scala file below.

Degree Cents Approximate ratios
0 0 1/1
1 133.333 14/13, 13/12, 12/11
2 230.940 8/7, 9/8
3 328.547 6/5
4 400 5/4, 24/19
5 497.607 4/3
6 569.060 25/18, 7/5, 11/8
7 640.513 10/7, 13/9, 16/11
8 692.820 3/2
9 790.427 11/7
10 861.880 13/8, 18/11, 5/3
11 933.333 12/7
12 985.641 7/4, 9/5
13 1057.094 11/6, 24/13, 13/7
14 1109.401 15/8, 17/9, 28/15
15 1161.708 33/17, 64/33
16 1200 2/1

Properties and trivia

A pentatonic Redbull scale on C.
A "Do-Re-Mi" song in wholetone Redbull scale.
  • As mentioned above, the tetrad obtained by stacking 4-steps from the tonic (i.e. starting on degree 0) is similar to the seventh tetrad in 12edo, approximating 4:5:6:7. Since 4 is a divisor of 16, there are only 4 types of 4-step tetrads, the others being only inversions, and the other types of 4-step tetrads do not approximate 4:5:6:7. (in example, chords stacked 4 steps from 2 steps above the tonic is approximating 9:11:13:17.)
  • The pentad obtained by stacking 3-steps from the tonic approximates 5:6:7:8:9.
  • Furthermore, Redbull has a pentatonic subset which is similar to 2L 3s[clarification needed], and the constituent notes of that scale can be approximated as 9:12:13:16:17 in just intonation.
  • The name Redbull, proposed by R-4981, comes from the energy drink brand from Austria.

Scala file

! redbull.scl
!
16-tone logarithmic fractal scale with 1:√3
16
!
133.33333333
230.94010768
328.54688202
400.
497.60677434
569.05989232
640.51301031
692.82032303
790.42709737
861.88021535
933.33333333
985.64064606
1057.09376404
1109.40107676
1161.70838948
1200.

See also