Number of the divisors

From Xenharmonic Wiki
Jump to navigation Jump to search
English Wikipedia has an article on:

The number of divisors d(n) of a number n can be found from its prime factorization as the product of the by-one incremented exponents of all present prime bases.

If the number n has the prime factorization

[math]\displaystyle{ \displaystyle n = p_1^{e_1}\cdot p_2^{e_2}\dotsm p_r^{e_r}, }[/math]

then:[1]

[math]\displaystyle{ \displaystyle d(n) = (e_1 + 1)(e_2 + 1) \dotsm (e_r + 1) }[/math]

For coprime numbers m and n it follows that

[math]\displaystyle{ \displaystyle d(mn) = d(m) \cdot d(n) }[/math]

Examples

Number Prime factorization Number of divisors
8 [math]\displaystyle{ 8 = 2^3 }[/math] [math]\displaystyle{ d(8) = (3+1) = 4 }[/math]
12 [math]\displaystyle{ 12 = 2^2 \cdot 3 }[/math] [math]\displaystyle{ d(12) = (2+1)(1+1) = 6 }[/math]
30 [math]\displaystyle{ 30 = 2 \cdot 3 \cdot 5 }[/math] [math]\displaystyle{ d(30) = (1+1)(1+1)(1+1) = 8 }[/math]

See also

References

  1. G. H. Hardy, E. M. Wright: An Introduction to the Theory of Numbers. 4. Edition, Oxford University Press, Oxford 1975. ISBN 0-19-853310-1, Theoreme 273, p. 239.

External links