Module:Harmonic entropy
Jump to navigation
Jump to search
Documentation transcluded from /doc
Documentation transcluded from /doc
This module provides a means to calculate harmonic Shannon entropy of a particular interval.
It can be called from other modules by using require("Module:Harmonic entropy")
and calling the _
-prefixed functions.
Functions
harmonic_entropy(c, ratios, deviation, norm)
computes harmonic Shannon entropy of an interval ofc
cents acrossratios
with a Gaussian with standarddeviation
(also in cents) and anorm
associated with theratios
.
local limits = require("Module:Limits")
local rat = require("Module:Rational")
local p = {}
-- Compute Harmonic Shannon entropy for an interval of `c` cents
-- `c`, `deviation`: in cents
-- `ratios`: an array of rational numbers
-- `norm`: a function of rational numbers
function p.harmonic_entropy(c, ratios, deviation, norm)
norm = norm or function(ratio)
return math.sqrt(rat.benedetti_height(ratio))
end
deviation = deviation or 1200 * math.log(1.01, 2)
ratios = ratios
or limits.integer_limit(200, function(ratio)
if math.abs(rat.cents(ratio) - c) > 3 * deviation then
return 1 / 0
end
return norm(ratio)
end, 100)
local function gaussian(x)
return math.exp(-x * x / (2 * deviation * deviation)) / (deviation * math.sqrt(2 * math.pi))
end
local function weighted_gaussian(ratio)
return gaussian(rat.cents(ratio) - c) / norm(ratio)
end
local q_norm = 0
for _, ratio in pairs(ratios) do
q_norm = q_norm + weighted_gaussian(ratio)
end
local function probability(ratio)
return weighted_gaussian(ratio) / q_norm
end
local entropy = 0
for _, ratio in pairs(ratios) do
local p_i = probability(ratio)
if p_i > 1e-5 then
entropy = entropy - p_i * math.log(p_i)
end
end
return entropy
end
return p