Due to the size of the edo, this will not cover all the notes unless expanded out from 5L 2s to 12L 7s, reducing the range commensurately.
6
14
7
15
23
31
39
0
8
16
24
32
40
48
56
1
9
17
25
33
41
49
57
65
73
81
97
2
10
18
26
34
42
50
58
66
74
82
90
98
98
3
11
19
27
35
43
51
59
67
75
83
91
99
4
12
20
91
99
4
12
20
28
36
44
52
60
68
76
84
92
100
5
13
21
29
37
92
100
5
13
21
29
37
45
53
61
69
77
85
93
101
6
14
22
30
38
46
54
62
85
93
101
6
14
22
30
38
46
54
62
70
78
86
94
102
7
15
23
31
39
47
55
63
71
79
94
102
7
15
23
31
39
47
55
63
71
79
87
95
0
8
16
24
32
40
48
56
64
72
80
88
96
1
8
16
24
32
40
48
56
64
72
80
88
96
1
9
17
25
33
41
49
57
65
73
81
89
97
2
33
41
49
57
65
73
81
89
97
2
10
18
26
34
42
50
58
66
74
82
90
98
3
50
58
66
74
82
90
98
3
11
19
27
35
43
51
59
67
75
83
91
99
75
83
91
99
4
12
20
28
36
44
52
60
68
76
84
92
100
92
100
5
13
21
29
37
45
53
61
69
77
85
93
14
22
30
38
46
54
62
70
78
86
94
31
39
47
55
63
71
79
87
56
64
72
80
88
73
81
Miracle
The Miracle mapping is the most efficient way to put well-tuned intervals close to one-another, but the 10L 1s mapping does not cover the whole gamut and the 10L 11s mapping has a very limited range & strong downward slope.
10L 1s
9
19
12
22
32
42
52
5
15
25
35
45
55
65
75
8
18
28
38
48
58
68
78
88
98
5
1
11
21
31
41
51
61
71
81
91
101
8
18
28
4
14
24
34
44
54
64
74
84
94
1
11
21
31
41
51
61
100
7
17
27
37
47
57
67
77
87
97
4
14
24
34
44
54
64
74
84
0
10
20
30
40
50
60
70
80
90
100
7
17
27
37
47
57
67
77
87
97
4
14
96
3
13
23
33
43
53
63
73
83
93
0
10
20
30
40
50
60
70
80
90
100
7
17
27
37
6
16
26
36
46
56
66
76
86
96
3
13
23
33
43
53
63
73
83
93
0
10
20
30
40
50
60
70
29
39
49
59
69
79
89
99
6
16
26
36
46
56
66
76
86
96
3
13
23
33
43
53
63
73
62
72
82
92
102
9
19
29
39
49
59
69
79
89
99
6
16
26
36
46
56
66
76
85
95
2
12
22
32
42
52
62
72
82
92
102
9
19
29
39
49
59
69
15
25
35
45
55
65
75
85
95
2
12
22
32
42
52
62
72
38
48
58
68
78
88
98
5
15
25
35
45
55
65
71
81
91
101
8
18
28
38
48
58
68
94
1
11
21
31
41
51
61
24
34
44
54
64
47
57
10L 11s
0
7
3
10
17
24
31
102
6
13
20
27
34
41
48
2
9
16
23
30
37
44
51
58
65
72
101
5
12
19
26
33
40
47
54
61
68
75
82
89
1
8
15
22
29
36
43
50
57
64
71
78
85
92
99
3
10
100
4
11
18
25
32
39
46
53
60
67
74
81
88
95
102
6
13
20
27
0
7
14
21
28
35
42
49
56
63
70
77
84
91
98
2
9
16
23
30
37
44
51
99
3
10
17
24
31
38
45
52
59
66
73
80
87
94
101
5
12
19
26
33
40
47
54
61
68
6
13
20
27
34
41
48
55
62
69
76
83
90
97
1
8
15
22
29
36
43
50
57
64
71
78
85
92
23
30
37
44
51
58
65
72
79
86
93
100
4
11
18
25
32
39
46
53
60
67
74
81
88
95
47
54
61
68
75
82
89
96
0
7
14
21
28
35
42
49
56
63
70
77
84
91
98
64
71
78
85
92
99
3
10
17
24
31
38
45
52
59
66
73
80
87
94
88
95
102
6
13
20
27
34
41
48
55
62
69
76
83
90
97
2
9
16
23
30
37
44
51
58
65
72
79
86
93
26
33
40
47
54
61
68
75
82
89
96
43
50
57
64
71
78
85
92
67
74
81
88
95
84
91
Phicordial
Since 103 is a prime edo, it does not support hemimiracle, but dividing the inverse generator in three gives you the 10L 3sPhicordial mapping, which covers the whole gamut about as efficiently as possible and keeps octaves close to horizontal.