Lumatone mapping for 103edo

There are many conceivable ways to map 103edo onto the onto the Lumatone keyboard. Only one, however, agrees with the Standard Lumatone mapping for Pythagorean.

Diatonic

 
101
15
7
24
41
58
75
102
16
33
50
67
84
101
15
8
25
42
59
76
93
7
24
41
58
75
0
17
34
51
68
85
102
16
33
50
67
84
101
15
9
26
43
60
77
94
8
25
42
59
76
93
7
24
41
58
75
1
18
35
52
69
86
0
17
34
51
68
85
102
16
33
50
67
84
101
15
10
27
44
61
78
95
9
26
43
60
77
94
8
25
42
59
76
93
7
24
41
58
75
2
19
36
53
70
87
1
18
35
52
69
86
0
17
34
51
68
85
102
16
33
50
67
84
101
15
28
45
62
79
96
10
27
44
61
78
95
9
26
43
60
77
94
8
25
42
59
76
93
7
24
41
58
75
71
88
2
19
36
53
70
87
1
18
35
52
69
86
0
17
34
51
68
85
102
16
33
50
67
84
28
45
62
79
96
10
27
44
61
78
95
9
26
43
60
77
94
8
25
42
59
76
93
71
88
2
19
36
53
70
87
1
18
35
52
69
86
0
17
34
51
68
85
28
45
62
79
96
10
27
44
61
78
95
9
26
43
60
77
94
71
88
2
19
36
53
70
87
1
18
35
52
69
86
28
45
62
79
96
10
27
44
61
78
95
71
88
2
19
36
53
70
87
28
45
62
79
96
71
88

Due to the size of the edo, this will not cover all the notes unless expanded out from 5L 2s to 12L 7s, reducing the range commensurately.

 
6
14
7
15
23
31
39
0
8
16
24
32
40
48
56
1
9
17
25
33
41
49
57
65
73
81
97
2
10
18
26
34
42
50
58
66
74
82
90
98
98
3
11
19
27
35
43
51
59
67
75
83
91
99
4
12
20
91
99
4
12
20
28
36
44
52
60
68
76
84
92
100
5
13
21
29
37
92
100
5
13
21
29
37
45
53
61
69
77
85
93
101
6
14
22
30
38
46
54
62
85
93
101
6
14
22
30
38
46
54
62
70
78
86
94
102
7
15
23
31
39
47
55
63
71
79
94
102
7
15
23
31
39
47
55
63
71
79
87
95
0
8
16
24
32
40
48
56
64
72
80
88
96
1
8
16
24
32
40
48
56
64
72
80
88
96
1
9
17
25
33
41
49
57
65
73
81
89
97
2
33
41
49
57
65
73
81
89
97
2
10
18
26
34
42
50
58
66
74
82
90
98
3
50
58
66
74
82
90
98
3
11
19
27
35
43
51
59
67
75
83
91
99
75
83
91
99
4
12
20
28
36
44
52
60
68
76
84
92
100
92
100
5
13
21
29
37
45
53
61
69
77
85
93
14
22
30
38
46
54
62
70
78
86
94
31
39
47
55
63
71
79
87
56
64
72
80
88
73
81

Miracle

The Miracle mapping is the most efficient way to put well-tuned intervals close to one-another, but the 10L 1s mapping does not cover the whole gamut and the 10L 11s mapping has a very limited range & strong downward slope.

10L 1s

 
9
19
12
22
32
42
52
5
15
25
35
45
55
65
75
8
18
28
38
48
58
68
78
88
98
5
1
11
21
31
41
51
61
71
81
91
101
8
18
28
4
14
24
34
44
54
64
74
84
94
1
11
21
31
41
51
61
100
7
17
27
37
47
57
67
77
87
97
4
14
24
34
44
54
64
74
84
0
10
20
30
40
50
60
70
80
90
100
7
17
27
37
47
57
67
77
87
97
4
14
96
3
13
23
33
43
53
63
73
83
93
0
10
20
30
40
50
60
70
80
90
100
7
17
27
37
6
16
26
36
46
56
66
76
86
96
3
13
23
33
43
53
63
73
83
93
0
10
20
30
40
50
60
70
29
39
49
59
69
79
89
99
6
16
26
36
46
56
66
76
86
96
3
13
23
33
43
53
63
73
62
72
82
92
102
9
19
29
39
49
59
69
79
89
99
6
16
26
36
46
56
66
76
85
95
2
12
22
32
42
52
62
72
82
92
102
9
19
29
39
49
59
69
15
25
35
45
55
65
75
85
95
2
12
22
32
42
52
62
72
38
48
58
68
78
88
98
5
15
25
35
45
55
65
71
81
91
101
8
18
28
38
48
58
68
94
1
11
21
31
41
51
61
24
34
44
54
64
47
57

10L 11s

 
0
7
3
10
17
24
31
102
6
13
20
27
34
41
48
2
9
16
23
30
37
44
51
58
65
72
101
5
12
19
26
33
40
47
54
61
68
75
82
89
1
8
15
22
29
36
43
50
57
64
71
78
85
92
99
3
10
100
4
11
18
25
32
39
46
53
60
67
74
81
88
95
102
6
13
20
27
0
7
14
21
28
35
42
49
56
63
70
77
84
91
98
2
9
16
23
30
37
44
51
99
3
10
17
24
31
38
45
52
59
66
73
80
87
94
101
5
12
19
26
33
40
47
54
61
68
6
13
20
27
34
41
48
55
62
69
76
83
90
97
1
8
15
22
29
36
43
50
57
64
71
78
85
92
23
30
37
44
51
58
65
72
79
86
93
100
4
11
18
25
32
39
46
53
60
67
74
81
88
95
47
54
61
68
75
82
89
96
0
7
14
21
28
35
42
49
56
63
70
77
84
91
98
64
71
78
85
92
99
3
10
17
24
31
38
45
52
59
66
73
80
87
94
88
95
102
6
13
20
27
34
41
48
55
62
69
76
83
90
97
2
9
16
23
30
37
44
51
58
65
72
79
86
93
26
33
40
47
54
61
68
75
82
89
96
43
50
57
64
71
78
85
92
67
74
81
88
95
84
91

Phicordial

Since 103 is a prime edo, it does not support hemimiracle, but dividing the inverse generator in three gives you the 10L 3s Phicordial mapping, which covers the whole gamut about as efficiently as possible and keeps octaves close to horizontal.

 
15
25
16
26
36
46
56
7
17
27
37
47
57
67
77
8
18
28
38
48
58
68
78
88
98
5
102
9
19
29
39
49
59
69
79
89
99
6
16
26
0
10
20
30
40
50
60
70
80
90
100
7
17
27
37
47
57
94
1
11
21
31
41
51
61
71
81
91
101
8
18
28
38
48
58
68
78
95
2
12
22
32
42
52
62
72
82
92
102
9
19
29
39
49
59
69
79
89
99
6
86
96
3
13
23
33
43
53
63
73
83
93
0
10
20
30
40
50
60
70
80
90
100
7
17
27
97
4
14
24
34
44
54
64
74
84
94
1
11
21
31
41
51
61
71
81
91
101
8
18
28
38
48
58
15
25
35
45
55
65
75
85
95
2
12
22
32
42
52
62
72
82
92
102
9
19
29
39
49
59
46
56
66
76
86
96
3
13
23
33
43
53
63
73
83
93
0
10
20
30
40
50
60
67
77
87
97
4
14
24
34
44
54
64
74
84
94
1
11
21
31
41
51
98
5
15
25
35
45
55
65
75
85
95
2
12
22
32
42
52
16
26
36
46
56
66
76
86
96
3
13
23
33
43
47
57
67
77
87
97
4
14
24
34
44
68
78
88
98
5
15
25
35
99
6
16
26
36
17
27


ViewTalkEditLumatone mappings 
100edo101edo102edoLumatone mapping for 103edo104edo105edo106edo