List of edo-distinct 24et rank two temperaments

From Xenharmonic Wiki
Jump to navigation Jump to search

The temperaments listed are 24edo-distinct, meaning that they are all different even if tuned in 24edo. The ordering is by increasing complexity of 7. The temperament of lowest TE complexity was chosen as the representative for each class of edo-distinctness.

7-limit temperaments

Period,
generator
Wedgie Name Complexity Comma list
24, 5 ⟨⟨ 2 8 1 8 -4 -20 ]] Godzilla 2.181 49/48 81/80
12, 5 ⟨⟨ 4 -8 2 -22 -8 27 ]] Anguirus 3.533 49/48 2048/2025
8, 3 ⟨⟨ 6 0 3 -14 -12 7 ]] Triforce 2.529 49/48 128/125
6, 1 ⟨⟨ 8 8 4 -6 -16 -13 ]] Hemidim 3.134 49/48 648/625
24, 1 ⟨⟨ 10 16 5 2 -20 -33 ]] Hemiripple 4.771 49/48 6561/6250
4, 1 ⟨⟨ 12 0 18 -28 -5 42 ]] Hemisemiaug 5.760 128/125 12005/11664
24, 11 ⟨⟨ 10 16 17 2 -1 -5 ]] Cohemiripple 4.562 245/243 1323/1250
3, 1 ⟨⟨ 8 8 16 -6 3 15 ]] Semidim 3.611 245/243 392/375
8, 1 ⟨⟨ 6 0 15 -14 7 35 ]] Semiaug 3.844 128/125 245/243
12, 1 ⟨⟨ 4 -8 -10 -22 -27 -1 ]] Shru 4.153 392/375 1323/1280
24, 7 ⟨⟨ 2 8 13 8 15 8 ]] Mohamaq 2.958 81/80 392/375
2, 1 ⟨⟨ 0 0 12 0 19 28 ]] Catler 3.026 81/80 128/125

11-limit temperaments

Period,
generator
Wedgie Name Complexity Comma list
24, 5 ⟨⟨ 2 8 1 -7 8 -4 -18 -20 -44 -23 ]] Baragon 2.811 49/48 56/55 81/80
12, 5 ⟨⟨ 4 -8 2 10 -22 -8 2 27 51 21 ]] Anguirus 3.583 49/48 56/55 243/242
8, 3 ⟨⟨ 6 0 3 3 -14 -12 -16 7 7 -2 ]] Triforce 2.201 49/48 56/55 77/75
6, 1 ⟨⟨ 8 8 4 20 -6 -16 4 -13 19 42 ]] Hemidim 3.423 49/48 77/75 243/242
24, 1 ⟨⟨ 10 16 5 13 2 -20 -14 -33 -25 19 ]] Hemiripple 4.132 49/48 121/120 567/550
4, 1 ⟨⟨ 12 0 18 18 -28 -5 -13 42 42 -12 ]] Hemisemiaug 5.105 56/55 128/125 3773/3645
24, 11 ⟨⟨ 10 16 17 25 2 -1 5 -5 3 11 ]] Cohemiripple 4.235 77/75 243/242 245/242
3, 1 ⟨⟨ 8 8 16 8 -6 3 -15 15 -9 -33 ]] Semidim 3.223 56/55 77/75 245/243
8, 1 ⟨⟨ 6 0 15 15 -14 7 3 35 35 -10 ]] Hemiaug 3.575 56/55 128/125 245/243
12, 1 ⟨⟨ 4 -8 -10 -2 -22 -27 -17 -1 23 29 ]] Shru 3.613 56/55 77/75 1323/1280
24, 7 ⟨⟨ 2 8 13 5 8 15 1 8 -16 -31 ]] Mohamaq 2.623 56/55 77/75 243/242
2, 1 ⟨⟨ 0 0 12 12 0 19 19 28 28 -8 ]] Catnip 3.030 56/55 81/80 128/125

13-limit temperaments

Period,
generator
Wedgie Name Complexity Comma list
24, 5 ⟨⟨ 2 8 1 17 11 8 -4 20 10 -20 12 -4 44 27 -25 ]] Varan 2.724 49/48 66/65 77/75 81/80
12, 5 ⟨⟨ 4 -8 2 10 -2 -22 -8 2 -18 27 51 25 21 -13 -44 ]] Anguirus 3.265 49/48 56/55 91/90 352/351
8, 3 ⟨⟨ 6 0 3 3 9 -14 -12 -16 -8 7 7 21 -2 14 20 ]] Triforce 2.105 49/48 56/55 66/65 77/75
6, 1 ⟨⟨ 8 8 4 20 20 -6 -16 4 2 -13 19 17 42 41 -5 ]] Hemidim 3.328 49/48 66/65 77/75 648/625
24, 1 ⟨⟨ 10 16 5 13 7 2 -20 -14 -26 -33 -25 -43 19 1 -24 ]] Hemiripple 3.852 49/48 66/65 121/120 351/350
4, 1 ⟨⟨ 12 0 6 6 -6 -28 -24 -32 -54 14 14 -14 -4 -39 -43 ]] Semitriforce 4.540 49/48 56/55 77/75 507/500
24, 11 ⟨⟨ 10 16 17 25 19 2 -1 5 -7 -5 3 -15 11 -10 -27 ]] Cohemiripple 3.791 66/65 77/75 147/143 351/350
3, 1 ⟨⟨ 8 8 16 8 8 -6 3 -15 -17 15 -9 -11 -33 -37 -2 ]] Semidim 2.959 56/55 66/65 77/75 507/500
8, 1 ⟨⟨ 6 0 -9 -9 -3 -14 -31 -35 -27 -21 -21 -7 6 25 23 ]] Hemiug 3.505 56/55 66/65 105/104 507/500
12, 1 ⟨⟨ 4 -8 -10 -2 -14 -22 -27 -17 -37 -1 23 -3 29 -2 -41 ]] Shru 3.606 56/55 77/75 105/104 507/500
24, 7 ⟨⟨ 2 8 13 5 -1 8 15 1 -9 8 -16 -32 -31 -51 -22 ]] Mohamaq 2.734 56/55 66/65 77/75 243/242
2, 1 ⟨⟨ 0 0 12 12 12 0 19 19 19 28 28 28 -8 -11 -3 ]] Catnip 2.883 56/55 66/65 81/80 105/104