List of edo-distinct 24et rank two temperaments
Jump to navigation
Jump to search
The temperaments listed are 24edo-distinct, meaning that they are all different even if tuned in 24edo. The ordering is by increasing complexity of 7. The temperament of lowest TE complexity was chosen as the representative for each class of edo-distinctness.
7-limit temperaments
Period, generator |
Wedgie | Name | Complexity | Comma list |
---|---|---|---|---|
24, 5 | ⟨⟨ 2 8 1 8 -4 -20 ]] | Godzilla | 2.181 | 49/48 81/80 |
12, 5 | ⟨⟨ 4 -8 2 -22 -8 27 ]] | Anguirus | 3.533 | 49/48 2048/2025 |
8, 3 | ⟨⟨ 6 0 3 -14 -12 7 ]] | Triforce | 2.529 | 49/48 128/125 |
6, 1 | ⟨⟨ 8 8 4 -6 -16 -13 ]] | Hemidim | 3.134 | 49/48 648/625 |
24, 1 | ⟨⟨ 10 16 5 2 -20 -33 ]] | Hemiripple | 4.771 | 49/48 6561/6250 |
4, 1 | ⟨⟨ 12 0 18 -28 -5 42 ]] | Hemisemiaug | 5.760 | 128/125 12005/11664 |
24, 11 | ⟨⟨ 10 16 17 2 -1 -5 ]] | Cohemiripple | 4.562 | 245/243 1323/1250 |
3, 1 | ⟨⟨ 8 8 16 -6 3 15 ]] | Semidim | 3.611 | 245/243 392/375 |
8, 1 | ⟨⟨ 6 0 15 -14 7 35 ]] | Semiaug | 3.844 | 128/125 245/243 |
12, 1 | ⟨⟨ 4 -8 -10 -22 -27 -1 ]] | Shru | 4.153 | 392/375 1323/1280 |
24, 7 | ⟨⟨ 2 8 13 8 15 8 ]] | Mohamaq | 2.958 | 81/80 392/375 |
2, 1 | ⟨⟨ 0 0 12 0 19 28 ]] | Catler | 3.026 | 81/80 128/125 |
11-limit temperaments
Period, generator |
Wedgie | Name | Complexity | Comma list |
---|---|---|---|---|
24, 5 | ⟨⟨ 2 8 1 -7 8 -4 -18 -20 -44 -23 ]] | Baragon | 2.811 | 49/48 56/55 81/80 |
12, 5 | ⟨⟨ 4 -8 2 10 -22 -8 2 27 51 21 ]] | Anguirus | 3.583 | 49/48 56/55 243/242 |
8, 3 | ⟨⟨ 6 0 3 3 -14 -12 -16 7 7 -2 ]] | Triforce | 2.201 | 49/48 56/55 77/75 |
6, 1 | ⟨⟨ 8 8 4 20 -6 -16 4 -13 19 42 ]] | Hemidim | 3.423 | 49/48 77/75 243/242 |
24, 1 | ⟨⟨ 10 16 5 13 2 -20 -14 -33 -25 19 ]] | Hemiripple | 4.132 | 49/48 121/120 567/550 |
4, 1 | ⟨⟨ 12 0 18 18 -28 -5 -13 42 42 -12 ]] | Hemisemiaug | 5.105 | 56/55 128/125 3773/3645 |
24, 11 | ⟨⟨ 10 16 17 25 2 -1 5 -5 3 11 ]] | Cohemiripple | 4.235 | 77/75 243/242 245/242 |
3, 1 | ⟨⟨ 8 8 16 8 -6 3 -15 15 -9 -33 ]] | Semidim | 3.223 | 56/55 77/75 245/243 |
8, 1 | ⟨⟨ 6 0 15 15 -14 7 3 35 35 -10 ]] | Hemiaug | 3.575 | 56/55 128/125 245/243 |
12, 1 | ⟨⟨ 4 -8 -10 -2 -22 -27 -17 -1 23 29 ]] | Shru | 3.613 | 56/55 77/75 1323/1280 |
24, 7 | ⟨⟨ 2 8 13 5 8 15 1 8 -16 -31 ]] | Mohamaq | 2.623 | 56/55 77/75 243/242 |
2, 1 | ⟨⟨ 0 0 12 12 0 19 19 28 28 -8 ]] | Catnip | 3.030 | 56/55 81/80 128/125 |
13-limit temperaments
Period, generator |
Wedgie | Name | Complexity | Comma list |
---|---|---|---|---|
24, 5 | ⟨⟨ 2 8 1 17 11 8 -4 20 10 -20 12 -4 44 27 -25 ]] | Varan | 2.724 | 49/48 66/65 77/75 81/80 |
12, 5 | ⟨⟨ 4 -8 2 10 -2 -22 -8 2 -18 27 51 25 21 -13 -44 ]] | Anguirus | 3.265 | 49/48 56/55 91/90 352/351 |
8, 3 | ⟨⟨ 6 0 3 3 9 -14 -12 -16 -8 7 7 21 -2 14 20 ]] | Triforce | 2.105 | 49/48 56/55 66/65 77/75 |
6, 1 | ⟨⟨ 8 8 4 20 20 -6 -16 4 2 -13 19 17 42 41 -5 ]] | Hemidim | 3.328 | 49/48 66/65 77/75 648/625 |
24, 1 | ⟨⟨ 10 16 5 13 7 2 -20 -14 -26 -33 -25 -43 19 1 -24 ]] | Hemiripple | 3.852 | 49/48 66/65 121/120 351/350 |
4, 1 | ⟨⟨ 12 0 6 6 -6 -28 -24 -32 -54 14 14 -14 -4 -39 -43 ]] | Semitriforce | 4.540 | 49/48 56/55 77/75 507/500 |
24, 11 | ⟨⟨ 10 16 17 25 19 2 -1 5 -7 -5 3 -15 11 -10 -27 ]] | Cohemiripple | 3.791 | 66/65 77/75 147/143 351/350 |
3, 1 | ⟨⟨ 8 8 16 8 8 -6 3 -15 -17 15 -9 -11 -33 -37 -2 ]] | Semidim | 2.959 | 56/55 66/65 77/75 507/500 |
8, 1 | ⟨⟨ 6 0 -9 -9 -3 -14 -31 -35 -27 -21 -21 -7 6 25 23 ]] | Hemiug | 3.505 | 56/55 66/65 105/104 507/500 |
12, 1 | ⟨⟨ 4 -8 -10 -2 -14 -22 -27 -17 -37 -1 23 -3 29 -2 -41 ]] | Shru | 3.606 | 56/55 77/75 105/104 507/500 |
24, 7 | ⟨⟨ 2 8 13 5 -1 8 15 1 -9 8 -16 -32 -31 -51 -22 ]] | Mohamaq | 2.734 | 56/55 66/65 77/75 243/242 |
2, 1 | ⟨⟨ 0 0 12 12 12 0 19 19 19 28 28 28 -8 -11 -3 ]] | Catnip | 2.883 | 56/55 66/65 81/80 105/104 |