List of edo-distinct 17c rank two temperaments

From Xenharmonic Wiki
Jump to navigation Jump to search

The temperaments listed are 17edo-distinct, meaning that they are all different even if tuned in 17edo. The ordering is by increasing complexity of 3. The temperament of lowest TE complexity supported by the 17c val (17 27 40 48 59 63]) was chosen as the representative for each class of edo-distinctness.

5-limit temperaments

Period,
generator
Wedgie Name Complexity Comma list
17, 7 ⟨⟨ 1 4 4 ]] Meantone 1.231 81/80
17, 5 ⟨⟨ 2 -9 -19 ]] Beatles 3.798 524288/492075
17, 8 ⟨⟨ 3 -5 -15 ]] Progress 2.877 32768/30375
17, 6 ⟨⟨ 4 -1 -11 ]] Smate 2.272 2048/1875
17, 2 ⟨⟨ 5 3 -7 ]] Progression 2.254 3456/3125
17, 4 ⟨⟨ 6 7 -3 ]] Subklei 2.833 17496/15625
17, 1 ⟨⟨ 7 11 1 ]] Slurpee 3.743 177147/156250
17, 3 ⟨⟨ 9 2 -18 ]] Genocchi 4.355 2359296/1953125

7-limit temperaments

Period,
generator
Wedgie Name Complexity Comma list
17, 7 ⟨⟨ 1 4 -2 4 -6 -16 ]] Dominant 1.466 36/35 64/63
17, 5 ⟨⟨ 2 8 13 8 15 8 ]] Mohamaq 2.958 81/80 392/375
17, 8 ⟨⟨ 3 -5 -6 -15 -18 0 ]] Progress 2.762 64/63 392/375
17, 6 ⟨⟨ 4 -1 9 -11 3 24 ]] Smate 2.575 36/35 2048/1875
17, 2 ⟨⟨ 5 3 7 -7 -3 8 ]] Progression 1.976 36/35 392/375
17, 4 ⟨⟨ 6 7 5 -3 -9 -8 ]] Subklei 2.340 36/35 1029/1000
17, 1 ⟨⟨ 7 11 3 1 -15 -24 ]] Slurpee 3.369 36/35 51200/50421
17, 3 ⟨⟨ 8 -2 1 -22 -21 8 ]] Hemismate 3.783 256/245 392/375

11-limit temperaments

Period,
generator
Wedgie Name Complexity Comma list
17, 7 ⟨⟨ 1 4 -2 -6 4 -6 -13 -16 -28 -10 ]] Dominant 1.864 36/35 56/55 64/63
17, 5 ⟨⟨ 2 8 -4 5 8 -12 1 -32 -16 28 ]] Neutrominant 2.569 36/35 64/63 121/120
17, 8 ⟨⟨ 3 -5 -6 -1 -15 -18 -12 0 15 18 ]] Progress 2.399 56/55 64/63 77/75
17, 6 ⟨⟨ 4 -1 9 10 -11 3 2 24 27 -3 ]] Smate 2.443 36/35 56/55 243/242
17, 2 ⟨⟨ 5 3 7 4 -7 -3 -11 8 -1 -13 ]] Progression 1.749 36/35 56/55 77/75
17, 4 ⟨⟨ 6 7 5 15 -3 -9 3 -8 11 25 ]] Subklei 2.459 36/35 77/75 352/343
17, 1 ⟨⟨ 7 11 3 9 1 -15 -10 -24 -17 15 ]] Slurpee 2.916 36/35 121/120 352/343
17, 3 ⟨⟨ 8 -2 1 3 -22 -21 -23 8 14 5 ]] Hemismate 3.279 56/55 77/75 256/245

13-limit temperaments

Period,
generator
Wedgie Name Complexity Comma list
17, 7 ⟨⟨ 1 4 -2 11 8 4 -6 14 9 -16 12 4 38 30 -13 ]] Domination 2.061 26/25 36/35 64/63 66/65
17, 5 ⟨⟨ 2 8 -4 5 -1 8 -12 1 -9 -32 -16 -32 28 12 -22 ]] Neutrominant 2.402 36/35 64/63 66/65 121/120
17, 8 ⟨⟨ 3 -5 -6 -1 -10 -15 -18 -12 -27 0 15 -5 18 -6 -31 ]] Progressive 2.485 26/25 56/55 64/63 77/75
17, 6 ⟨⟨ 4 -1 9 10 -2 -11 3 2 -18 24 27 -1 -3 -39 -44 ]] Smate 2.520 26/25 36/35 56/55 243/242
17, 2 ⟨⟨ 5 3 7 4 6 -7 -3 -11 -9 8 -1 3 -13 -9 6 ]] Progression 1.563 26/25 36/35 56/55 66/65
17, 4 ⟨⟨ 6 7 5 15 14 -3 -9 3 0 -8 11 7 25 21 -7 ]] Subklei 2.307 26/25 36/35 66/65 352/343
17, 1 ⟨⟨ 7 11 3 9 5 1 -15 -10 -18 -24 -17 -29 15 3 -16 ]] Slurpee 2.700 36/35 66/65 143/140 352/343
17, 3 ⟨⟨ 8 -2 1 3 -4 -22 -21 -23 -36 8 14 -2 5 -15 -25 ]] Hemismate 3.187 26/25 56/55 77/75 256/245