List of 7-limit factorizations

From Xenharmonic Wiki
Jump to: navigation, search

This list includes prime factorizations and monzos of all numbers from 1 to 99999 which are divisible by 7, and not divisible by any larger prime number.

integer factorization monzo
7 7 | 0 0 0 1 >
14 2⋅7 | 1 0 0 1 >
21 3⋅7 | 0 1 0 1 >
28 2⋅2⋅7 | 2 0 0 1 >
35 5⋅7 | 0 0 1 1 >
42 2⋅3⋅7 | 1 1 0 1 >
49 7⋅7 | 0 0 0 2 >
56 2⋅2⋅2⋅7 | 3 0 0 1 >
63 3⋅3⋅7 | 0 2 0 1 >
70 2⋅5⋅7 | 1 0 1 1 >
84 2⋅2⋅3⋅7 | 2 1 0 1 >
98 2⋅7⋅7 | 1 0 0 2 >
105 3⋅5⋅7 | 0 1 1 1 >
112 2⋅2⋅2⋅2⋅7 | 4 0 0 1 >
126 2⋅3⋅3⋅7 | 1 2 0 1 >
140 2⋅2⋅5⋅7 | 2 0 1 1 >
147 3⋅7⋅7 | 0 1 0 2 >
168 2⋅2⋅2⋅3⋅7 | 3 1 0 1 >
175 5⋅5⋅7 | 0 0 2 1 >
189 3⋅3⋅3⋅7 | 0 3 0 1 >
196 2⋅2⋅7⋅7 | 2 0 0 2 >
210 2⋅3⋅5⋅7 | 1 1 1 1 >
224 2⋅2⋅2⋅2⋅2⋅7 | 5 0 0 1 >
245 5⋅7⋅7 | 0 0 1 2 >
252 2⋅2⋅3⋅3⋅7 | 2 2 0 1 >
280 2⋅2⋅2⋅5⋅7 | 3 0 1 1 >
294 2⋅3⋅7⋅7 | 1 1 0 2 >
315 3⋅3⋅5⋅7 | 0 2 1 1 >
336 2⋅2⋅2⋅2⋅3⋅7 | 4 1 0 1 >
343 7⋅7⋅7 | 0 0 0 3 >
350 2⋅5⋅5⋅7 | 1 0 2 1 >
378 2⋅3⋅3⋅3⋅7 | 1 3 0 1 >
392 2⋅2⋅2⋅7⋅7 | 3 0 0 2 >
420 2⋅2⋅3⋅5⋅7 | 2 1 1 1 >
441 3⋅3⋅7⋅7 | 0 2 0 2 >
448 2⋅2⋅2⋅2⋅2⋅2⋅7 | 6 0 0 1 >
490 2⋅5⋅7⋅7 | 1 0 1 2 >
504 2⋅2⋅2⋅3⋅3⋅7 | 3 2 0 1 >
525 3⋅5⋅5⋅7 | 0 1 2 1 >
560 2⋅2⋅2⋅2⋅5⋅7 | 4 0 1 1 >
567 3⋅3⋅3⋅3⋅7 | 0 4 0 1 >
588 2⋅2⋅3⋅7⋅7 | 2 1 0 2 >
630 2⋅3⋅3⋅5⋅7 | 1 2 1 1 >
672 2⋅2⋅2⋅2⋅2⋅3⋅7 | 5 1 0 1 >
686 2⋅7⋅7⋅7 | 1 0 0 3 >
700 2⋅2⋅5⋅5⋅7 | 2 0 2 1 >
735 3⋅5⋅7⋅7 | 0 1 1 2 >
756 2⋅2⋅3⋅3⋅3⋅7 | 2 3 0 1 >
784 2⋅2⋅2⋅2⋅7⋅7 | 4 0 0 2 >
840 2⋅2⋅2⋅3⋅5⋅7 | 3 1 1 1 >
875 5⋅5⋅5⋅7 | 0 0 3 1 >
882 2⋅3⋅3⋅7⋅7 | 1 2 0 2 >
896 2⋅2⋅2⋅2⋅2⋅2⋅2⋅7 | 7 0 0 1 >
945 3⋅3⋅3⋅5⋅7 | 0 3 1 1 >
980 2⋅2⋅5⋅7⋅7 | 2 0 1 2 >
1008 2⋅2⋅2⋅2⋅3⋅3⋅7 | 4 2 0 1 >
1029 3⋅7⋅7⋅7 | 0 1 0 3 >
1050 2⋅3⋅5⋅5⋅7 | 1 1 2 1 >
1120 2⋅2⋅2⋅2⋅2⋅5⋅7 | 5 0 1 1 >
1134 2⋅3⋅3⋅3⋅3⋅7 | 1 4 0 1 >
1176 2⋅2⋅2⋅3⋅7⋅7 | 3 1 0 2 >
1225 5⋅5⋅7⋅7 | 0 0 2 2 >
1260 2⋅2⋅3⋅3⋅5⋅7 | 2 2 1 1 >
1323 3⋅3⋅3⋅7⋅7 | 0 3 0 2 >
1344 2⋅2⋅2⋅2⋅2⋅2⋅3⋅7 | 6 1 0 1 >
1372 2⋅2⋅7⋅7⋅7 | 2 0 0 3 >
1400 2⋅2⋅2⋅5⋅5⋅7 | 3 0 2 1 >
1470 2⋅3⋅5⋅7⋅7 | 1 1 1 2 >
1512 2⋅2⋅2⋅3⋅3⋅3⋅7 | 3 3 0 1 >
1568 2⋅2⋅2⋅2⋅2⋅7⋅7 | 5 0 0 2 >
1575 3⋅3⋅5⋅5⋅7 | 0 2 2 1 >
1680 2⋅2⋅2⋅2⋅3⋅5⋅7 | 4 1 1 1 >
1701 3⋅3⋅3⋅3⋅3⋅7 | 0 5 0 1 >
1715 5⋅7⋅7⋅7 | 0 0 1 3 >
1750 2⋅5⋅5⋅5⋅7 | 1 0 3 1 >
1764 2⋅2⋅3⋅3⋅7⋅7 | 2 2 0 2 >
1792 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅7 | 8 0 0 1 >
1890 2⋅3⋅3⋅3⋅5⋅7 | 1 3 1 1 >
1960 2⋅2⋅2⋅5⋅7⋅7 | 3 0 1 2 >
2016 2⋅2⋅2⋅2⋅2⋅3⋅3⋅7 | 5 2 0 1 >
2058 2⋅3⋅7⋅7⋅7 | 1 1 0 3 >
2100 2⋅2⋅3⋅5⋅5⋅7 | 2 1 2 1 >
2205 3⋅3⋅5⋅7⋅7 | 0 2 1 2 >
2240 2⋅2⋅2⋅2⋅2⋅2⋅5⋅7 | 6 0 1 1 >
2268 2⋅2⋅3⋅3⋅3⋅3⋅7 | 2 4 0 1 >
2352 2⋅2⋅2⋅2⋅3⋅7⋅7 | 4 1 0 2 >
2401 7⋅7⋅7⋅7 | 0 0 0 4 >
2450 2⋅5⋅5⋅7⋅7 | 1 0 2 2 >
2520 2⋅2⋅2⋅3⋅3⋅5⋅7 | 3 2 1 1 >
2625 3⋅5⋅5⋅5⋅7 | 0 1 3 1 >
2646 2⋅3⋅3⋅3⋅7⋅7 | 1 3 0 2 >
2688 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅7 | 7 1 0 1 >
2744 2⋅2⋅2⋅7⋅7⋅7 | 3 0 0 3 >
2800 2⋅2⋅2⋅2⋅5⋅5⋅7 | 4 0 2 1 >
2835 3⋅3⋅3⋅3⋅5⋅7 | 0 4 1 1 >
2940 2⋅2⋅3⋅5⋅7⋅7 | 2 1 1 2 >
3024 2⋅2⋅2⋅2⋅3⋅3⋅3⋅7 | 4 3 0 1 >
3087 3⋅3⋅7⋅7⋅7 | 0 2 0 3 >
3136 2⋅2⋅2⋅2⋅2⋅2⋅7⋅7 | 6 0 0 2 >
3150 2⋅3⋅3⋅5⋅5⋅7 | 1 2 2 1 >
3360 2⋅2⋅2⋅2⋅2⋅3⋅5⋅7 | 5 1 1 1 >
3402 2⋅3⋅3⋅3⋅3⋅3⋅7 | 1 5 0 1 >
3430 2⋅5⋅7⋅7⋅7 | 1 0 1 3 >
3500 2⋅2⋅5⋅5⋅5⋅7 | 2 0 3 1 >
3528 2⋅2⋅2⋅3⋅3⋅7⋅7 | 3 2 0 2 >
3584 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅7 | 9 0 0 1 >
3675 3⋅5⋅5⋅7⋅7 | 0 1 2 2 >
3780 2⋅2⋅3⋅3⋅3⋅5⋅7 | 2 3 1 1 >
3920 2⋅2⋅2⋅2⋅5⋅7⋅7 | 4 0 1 2 >
3969 3⋅3⋅3⋅3⋅7⋅7 | 0 4 0 2 >
4032 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅7 | 6 2 0 1 >
4116 2⋅2⋅3⋅7⋅7⋅7 | 2 1 0 3 >
4200 2⋅2⋅2⋅3⋅5⋅5⋅7 | 3 1 2 1 >
4375 5⋅5⋅5⋅5⋅7 | 0 0 4 1 >
4410 2⋅3⋅3⋅5⋅7⋅7 | 1 2 1 2 >
4480 2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅7 | 7 0 1 1 >
4536 2⋅2⋅2⋅3⋅3⋅3⋅3⋅7 | 3 4 0 1 >
4704 2⋅2⋅2⋅2⋅2⋅3⋅7⋅7 | 5 1 0 2 >
4725 3⋅3⋅3⋅5⋅5⋅7 | 0 3 2 1 >
4802 2⋅7⋅7⋅7⋅7 | 1 0 0 4 >
4900 2⋅2⋅5⋅5⋅7⋅7 | 2 0 2 2 >
5040 2⋅2⋅2⋅2⋅3⋅3⋅5⋅7 | 4 2 1 1 >
5103 3⋅3⋅3⋅3⋅3⋅3⋅7 | 0 6 0 1 >
5145 3⋅5⋅7⋅7⋅7 | 0 1 1 3 >
5250 2⋅3⋅5⋅5⋅5⋅7 | 1 1 3 1 >
5292 2⋅2⋅3⋅3⋅3⋅7⋅7 | 2 3 0 2 >
5376 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅7 | 8 1 0 1 >
5488 2⋅2⋅2⋅2⋅7⋅7⋅7 | 4 0 0 3 >
5600 2⋅2⋅2⋅2⋅2⋅5⋅5⋅7 | 5 0 2 1 >
5670 2⋅3⋅3⋅3⋅3⋅5⋅7 | 1 4 1 1 >
5880 2⋅2⋅2⋅3⋅5⋅7⋅7 | 3 1 1 2 >
6048 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅7 | 5 3 0 1 >
6125 5⋅5⋅5⋅7⋅7 | 0 0 3 2 >
6174 2⋅3⋅3⋅7⋅7⋅7 | 1 2 0 3 >
6272 2⋅2⋅2⋅2⋅2⋅2⋅2⋅7⋅7 | 7 0 0 2 >
6300 2⋅2⋅3⋅3⋅5⋅5⋅7 | 2 2 2 1 >
6615 3⋅3⋅3⋅5⋅7⋅7 | 0 3 1 2 >
6720 2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅7 | 6 1 1 1 >
6804 2⋅2⋅3⋅3⋅3⋅3⋅3⋅7 | 2 5 0 1 >
6860 2⋅2⋅5⋅7⋅7⋅7 | 2 0 1 3 >
7000 2⋅2⋅2⋅5⋅5⋅5⋅7 | 3 0 3 1 >
7056 2⋅2⋅2⋅2⋅3⋅3⋅7⋅7 | 4 2 0 2 >
7168 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅7 | 10 0 0 1 >
7203 3⋅7⋅7⋅7⋅7 | 0 1 0 4 >
7350 2⋅3⋅5⋅5⋅7⋅7 | 1 1 2 2 >
7560 2⋅2⋅2⋅3⋅3⋅3⋅5⋅7 | 3 3 1 1 >
7840 2⋅2⋅2⋅2⋅2⋅5⋅7⋅7 | 5 0 1 2 >
7875 3⋅3⋅5⋅5⋅5⋅7 | 0 2 3 1 >
7938 2⋅3⋅3⋅3⋅3⋅7⋅7 | 1 4 0 2 >
8064 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅7 | 7 2 0 1 >
8232 2⋅2⋅2⋅3⋅7⋅7⋅7 | 3 1 0 3 >
8400 2⋅2⋅2⋅2⋅3⋅5⋅5⋅7 | 4 1 2 1 >
8505 3⋅3⋅3⋅3⋅3⋅5⋅7 | 0 5 1 1 >
8575 5⋅5⋅7⋅7⋅7 | 0 0 2 3 >
8750 2⋅5⋅5⋅5⋅5⋅7 | 1 0 4 1 >
8820 2⋅2⋅3⋅3⋅5⋅7⋅7 | 2 2 1 2 >
8960 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅7 | 8 0 1 1 >
9072 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅7 | 4 4 0 1 >
9261 3⋅3⋅3⋅7⋅7⋅7 | 0 3 0 3 >
9408 2⋅2⋅2⋅2⋅2⋅2⋅3⋅7⋅7 | 6 1 0 2 >
9450 2⋅3⋅3⋅3⋅5⋅5⋅7 | 1 3 2 1 >
9604 2⋅2⋅7⋅7⋅7⋅7 | 2 0 0 4 >
9800 2⋅2⋅2⋅5⋅5⋅7⋅7 | 3 0 2 2 >
10080 2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅7 | 5 2 1 1 >
10206 2⋅3⋅3⋅3⋅3⋅3⋅3⋅7 | 1 6 0 1 >
10290 2⋅3⋅5⋅7⋅7⋅7 | 1 1 1 3 >
10500 2⋅2⋅3⋅5⋅5⋅5⋅7 | 2 1 3 1 >
10584 2⋅2⋅2⋅3⋅3⋅3⋅7⋅7 | 3 3 0 2 >
10752 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅7 | 9 1 0 1 >
10976 2⋅2⋅2⋅2⋅2⋅7⋅7⋅7 | 5 0 0 3 >
11025 3⋅3⋅5⋅5⋅7⋅7 | 0 2 2 2 >
11200 2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅7 | 6 0 2 1 >
11340 2⋅2⋅3⋅3⋅3⋅3⋅5⋅7 | 2 4 1 1 >
11760 2⋅2⋅2⋅2⋅3⋅5⋅7⋅7 | 4 1 1 2 >
11907 3⋅3⋅3⋅3⋅3⋅7⋅7 | 0 5 0 2 >
12005 5⋅7⋅7⋅7⋅7 | 0 0 1 4 >
12096 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅7 | 6 3 0 1 >
12250 2⋅5⋅5⋅5⋅7⋅7 | 1 0 3 2 >
12348 2⋅2⋅3⋅3⋅7⋅7⋅7 | 2 2 0 3 >
12544 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅7⋅7 | 8 0 0 2 >
12600 2⋅2⋅2⋅3⋅3⋅5⋅5⋅7 | 3 2 2 1 >
13125 3⋅5⋅5⋅5⋅5⋅7 | 0 1 4 1 >
13230 2⋅3⋅3⋅3⋅5⋅7⋅7 | 1 3 1 2 >
13440 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅7 | 7 1 1 1 >
13608 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅7 | 3 5 0 1 >
13720 2⋅2⋅2⋅5⋅7⋅7⋅7 | 3 0 1 3 >
14000 2⋅2⋅2⋅2⋅5⋅5⋅5⋅7 | 4 0 3 1 >
14112 2⋅2⋅2⋅2⋅2⋅3⋅3⋅7⋅7 | 5 2 0 2 >
14175 3⋅3⋅3⋅3⋅5⋅5⋅7 | 0 4 2 1 >
14336 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅7 | 11 0 0 1 >
14406 2⋅3⋅7⋅7⋅7⋅7 | 1 1 0 4 >
14700 2⋅2⋅3⋅5⋅5⋅7⋅7 | 2 1 2 2 >
15120 2⋅2⋅2⋅2⋅3⋅3⋅3⋅5⋅7 | 4 3 1 1 >
15309 3⋅3⋅3⋅3⋅3⋅3⋅3⋅7 | 0 7 0 1 >
15435 3⋅3⋅5⋅7⋅7⋅7 | 0 2 1 3 >
15680 2⋅2⋅2⋅2⋅2⋅2⋅5⋅7⋅7 | 6 0 1 2 >
15750 2⋅3⋅3⋅5⋅5⋅5⋅7 | 1 2 3 1 >
15876 2⋅2⋅3⋅3⋅3⋅3⋅7⋅7 | 2 4 0 2 >
16128 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅7 | 8 2 0 1 >
16464 2⋅2⋅2⋅2⋅3⋅7⋅7⋅7 | 4 1 0 3 >
16800 2⋅2⋅2⋅2⋅2⋅3⋅5⋅5⋅7 | 5 1 2 1 >
16807 7⋅7⋅7⋅7⋅7 | 0 0 0 5 >
17010 2⋅3⋅3⋅3⋅3⋅3⋅5⋅7 | 1 5 1 1 >
17150 2⋅5⋅5⋅7⋅7⋅7 | 1 0 2 3 >
17500 2⋅2⋅5⋅5⋅5⋅5⋅7 | 2 0 4 1 >
17640 2⋅2⋅2⋅3⋅3⋅5⋅7⋅7 | 3 2 1 2 >
17920 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅7 | 9 0 1 1 >
18144 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅7 | 5 4 0 1 >
18375 3⋅5⋅5⋅5⋅7⋅7 | 0 1 3 2 >
18522 2⋅3⋅3⋅3⋅7⋅7⋅7 | 1 3 0 3 >
18816 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅7⋅7 | 7 1 0 2 >
18900 2⋅2⋅3⋅3⋅3⋅5⋅5⋅7 | 2 3 2 1 >
19208 2⋅2⋅2⋅7⋅7⋅7⋅7 | 3 0 0 4 >
19600 2⋅2⋅2⋅2⋅5⋅5⋅7⋅7 | 4 0 2 2 >
19845 3⋅3⋅3⋅3⋅5⋅7⋅7 | 0 4 1 2 >
20160 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅7 | 6 2 1 1 >
20412 2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅7 | 2 6 0 1 >
20580 2⋅2⋅3⋅5⋅7⋅7⋅7 | 2 1 1 3 >
21000 2⋅2⋅2⋅3⋅5⋅5⋅5⋅7 | 3 1 3 1 >
21168 2⋅2⋅2⋅2⋅3⋅3⋅3⋅7⋅7 | 4 3 0 2 >
21504 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅7 | 10 1 0 1 >
21609 3⋅3⋅7⋅7⋅7⋅7 | 0 2 0 4 >
21875 5⋅5⋅5⋅5⋅5⋅7 | 0 0 5 1 >
21952 2⋅2⋅2⋅2⋅2⋅2⋅7⋅7⋅7 | 6 0 0 3 >
22050 2⋅3⋅3⋅5⋅5⋅7⋅7 | 1 2 2 2 >
22400 2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅7 | 7 0 2 1 >
22680 2⋅2⋅2⋅3⋅3⋅3⋅3⋅5⋅7 | 3 4 1 1 >
23520 2⋅2⋅2⋅2⋅2⋅3⋅5⋅7⋅7 | 5 1 1 2 >
23625 3⋅3⋅3⋅5⋅5⋅5⋅7 | 0 3 3 1 >
23814 2⋅3⋅3⋅3⋅3⋅3⋅7⋅7 | 1 5 0 2 >
24010 2⋅5⋅7⋅7⋅7⋅7 | 1 0 1 4 >
24192 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅7 | 7 3 0 1 >
24500 2⋅2⋅5⋅5⋅5⋅7⋅7 | 2 0 3 2 >
24696 2⋅2⋅2⋅3⋅3⋅7⋅7⋅7 | 3 2 0 3 >
25088 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅7⋅7 | 9 0 0 2 >
25200 2⋅2⋅2⋅2⋅3⋅3⋅5⋅5⋅7 | 4 2 2 1 >
25515 3⋅3⋅3⋅3⋅3⋅3⋅5⋅7 | 0 6 1 1 >
25725 3⋅5⋅5⋅7⋅7⋅7 | 0 1 2 3 >
26250 2⋅3⋅5⋅5⋅5⋅5⋅7 | 1 1 4 1 >
26460 2⋅2⋅3⋅3⋅3⋅5⋅7⋅7 | 2 3 1 2 >
26880 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅7 | 8 1 1 1 >
27216 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅7 | 4 5 0 1 >
27440 2⋅2⋅2⋅2⋅5⋅7⋅7⋅7 | 4 0 1 3 >
27783 3⋅3⋅3⋅3⋅7⋅7⋅7 | 0 4 0 3 >
28000 2⋅2⋅2⋅2⋅2⋅5⋅5⋅5⋅7 | 5 0 3 1 >
28224 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅7⋅7 | 6 2 0 2 >
28350 2⋅3⋅3⋅3⋅3⋅5⋅5⋅7 | 1 4 2 1 >
28672 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅7 | 12 0 0 1 >
28812 2⋅2⋅3⋅7⋅7⋅7⋅7 | 2 1 0 4 >
29400 2⋅2⋅2⋅3⋅5⋅5⋅7⋅7 | 3 1 2 2 >
30240 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅5⋅7 | 5 3 1 1 >
30618 2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅7 | 1 7 0 1 >
30625 5⋅5⋅5⋅5⋅7⋅7 | 0 0 4 2 >
30870 2⋅3⋅3⋅5⋅7⋅7⋅7 | 1 2 1 3 >
31360 2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅7⋅7 | 7 0 1 2 >
31500 2⋅2⋅3⋅3⋅5⋅5⋅5⋅7 | 2 2 3 1 >
31752 2⋅2⋅2⋅3⋅3⋅3⋅3⋅7⋅7 | 3 4 0 2 >
32256 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅7 | 9 2 0 1 >
32928 2⋅2⋅2⋅2⋅2⋅3⋅7⋅7⋅7 | 5 1 0 3 >
33075 3⋅3⋅3⋅5⋅5⋅7⋅7 | 0 3 2 2 >
33600 2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅5⋅7 | 6 1 2 1 >
33614 2⋅7⋅7⋅7⋅7⋅7 | 1 0 0 5 >
34020 2⋅2⋅3⋅3⋅3⋅3⋅3⋅5⋅7 | 2 5 1 1 >
34300 2⋅2⋅5⋅5⋅7⋅7⋅7 | 2 0 2 3 >
35000 2⋅2⋅2⋅5⋅5⋅5⋅5⋅7 | 3 0 4 1 >
35280 2⋅2⋅2⋅2⋅3⋅3⋅5⋅7⋅7 | 4 2 1 2 >
35721 3⋅3⋅3⋅3⋅3⋅3⋅7⋅7 | 0 6 0 2 >
35840 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅7 | 10 0 1 1 >
36015 3⋅5⋅7⋅7⋅7⋅7 | 0 1 1 4 >
36288 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅7 | 6 4 0 1 >
36750 2⋅3⋅5⋅5⋅5⋅7⋅7 | 1 1 3 2 >
37044 2⋅2⋅3⋅3⋅3⋅7⋅7⋅7 | 2 3 0 3 >
37632 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅7⋅7 | 8 1 0 2 >
37800 2⋅2⋅2⋅3⋅3⋅3⋅5⋅5⋅7 | 3 3 2 1 >
38416 2⋅2⋅2⋅2⋅7⋅7⋅7⋅7 | 4 0 0 4 >
39200 2⋅2⋅2⋅2⋅2⋅5⋅5⋅7⋅7 | 5 0 2 2 >
39375 3⋅3⋅5⋅5⋅5⋅5⋅7 | 0 2 4 1 >
39690 2⋅3⋅3⋅3⋅3⋅5⋅7⋅7 | 1 4 1 2 >
40320 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅7 | 7 2 1 1 >
40824 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅7 | 3 6 0 1 >
41160 2⋅2⋅2⋅3⋅5⋅7⋅7⋅7 | 3 1 1 3 >
42000 2⋅2⋅2⋅2⋅3⋅5⋅5⋅5⋅7 | 4 1 3 1 >
42336 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅7⋅7 | 5 3 0 2 >
42525 3⋅3⋅3⋅3⋅3⋅5⋅5⋅7 | 0 5 2 1 >
42875 5⋅5⋅5⋅7⋅7⋅7 | 0 0 3 3 >
43008 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅7 | 11 1 0 1 >
43218 2⋅3⋅3⋅7⋅7⋅7⋅7 | 1 2 0 4 >
43750 2⋅5⋅5⋅5⋅5⋅5⋅7 | 1 0 5 1 >
43904 2⋅2⋅2⋅2⋅2⋅2⋅2⋅7⋅7⋅7 | 7 0 0 3 >
44100 2⋅2⋅3⋅3⋅5⋅5⋅7⋅7 | 2 2 2 2 >
44800 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅7 | 8 0 2 1 >
45360 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅5⋅7 | 4 4 1 1 >
45927 3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅7 | 0 8 0 1 >
46305 3⋅3⋅3⋅5⋅7⋅7⋅7 | 0 3 1 3 >
47040 2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅7⋅7 | 6 1 1 2 >
47250 2⋅3⋅3⋅3⋅5⋅5⋅5⋅7 | 1 3 3 1 >
47628 2⋅2⋅3⋅3⋅3⋅3⋅3⋅7⋅7 | 2 5 0 2 >
48020 2⋅2⋅5⋅7⋅7⋅7⋅7 | 2 0 1 4 >
48384 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅7 | 8 3 0 1 >
49000 2⋅2⋅2⋅5⋅5⋅5⋅7⋅7 | 3 0 3 2 >
49392 2⋅2⋅2⋅2⋅3⋅3⋅7⋅7⋅7 | 4 2 0 3 >
50176 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅7⋅7 | 10 0 0 2 >
50400 2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅5⋅7 | 5 2 2 1 >
50421 3⋅7⋅7⋅7⋅7⋅7 | 0 1 0 5 >
51030 2⋅3⋅3⋅3⋅3⋅3⋅3⋅5⋅7 | 1 6 1 1 >
51450 2⋅3⋅5⋅5⋅7⋅7⋅7 | 1 1 2 3 >
52500 2⋅2⋅3⋅5⋅5⋅5⋅5⋅7 | 2 1 4 1 >
52920 2⋅2⋅2⋅3⋅3⋅3⋅5⋅7⋅7 | 3 3 1 2 >
53760 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅7 | 9 1 1 1 >
54432 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅7 | 5 5 0 1 >
54880 2⋅2⋅2⋅2⋅2⋅5⋅7⋅7⋅7 | 5 0 1 3 >
55125 3⋅3⋅5⋅5⋅5⋅7⋅7 | 0 2 3 2 >
55566 2⋅3⋅3⋅3⋅3⋅7⋅7⋅7 | 1 4 0 3 >
56000 2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅5⋅7 | 6 0 3 1 >
56448 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅7⋅7 | 7 2 0 2 >
56700 2⋅2⋅3⋅3⋅3⋅3⋅5⋅5⋅7 | 2 4 2 1 >
57344 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅7 | 13 0 0 1 >
57624 2⋅2⋅2⋅3⋅7⋅7⋅7⋅7 | 3 1 0 4 >
58800 2⋅2⋅2⋅2⋅3⋅5⋅5⋅7⋅7 | 4 1 2 2 >
59535 3⋅3⋅3⋅3⋅3⋅5⋅7⋅7 | 0 5 1 2 >
60025 5⋅5⋅7⋅7⋅7⋅7 | 0 0 2 4 >
60480 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅5⋅7 | 6 3 1 1 >
61236 2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅7 | 2 7 0 1 >
61250 2⋅5⋅5⋅5⋅5⋅7⋅7 | 1 0 4 2 >
61740 2⋅2⋅3⋅3⋅5⋅7⋅7⋅7 | 2 2 1 3 >
62720 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅7⋅7 | 8 0 1 2 >
63000 2⋅2⋅2⋅3⋅3⋅5⋅5⋅5⋅7 | 3 2 3 1 >
63504 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅7⋅7 | 4 4 0 2 >
64512 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅7 | 10 2 0 1 >
64827 3⋅3⋅3⋅7⋅7⋅7⋅7 | 0 3 0 4 >
65625 3⋅5⋅5⋅5⋅5⋅5⋅7 | 0 1 5 1 >
65856 2⋅2⋅2⋅2⋅2⋅2⋅3⋅7⋅7⋅7 | 6 1 0 3 >
66150 2⋅3⋅3⋅3⋅5⋅5⋅7⋅7 | 1 3 2 2 >
67200 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅5⋅7 | 7 1 2 1 >
67228 2⋅2⋅7⋅7⋅7⋅7⋅7 | 2 0 0 5 >
68040 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅5⋅7 | 3 5 1 1 >
68600 2⋅2⋅2⋅5⋅5⋅7⋅7⋅7 | 3 0 2 3 >
70000 2⋅2⋅2⋅2⋅5⋅5⋅5⋅5⋅7 | 4 0 4 1 >
70560 2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅7⋅7 | 5 2 1 2 >
70875 3⋅3⋅3⋅3⋅5⋅5⋅5⋅7 | 0 4 3 1 >
71442 2⋅3⋅3⋅3⋅3⋅3⋅3⋅7⋅7 | 1 6 0 2 >
71680 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅7 | 11 0 1 1 >
72030 2⋅3⋅5⋅7⋅7⋅7⋅7 | 1 1 1 4 >
72576 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅7 | 7 4 0 1 >
73500 2⋅2⋅3⋅5⋅5⋅5⋅7⋅7 | 2 1 3 2 >
74088 2⋅2⋅2⋅3⋅3⋅3⋅7⋅7⋅7 | 3 3 0 3 >
75264 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅7⋅7 | 9 1 0 2 >
75600 2⋅2⋅2⋅2⋅3⋅3⋅3⋅5⋅5⋅7 | 4 3 2 1 >
76545 3⋅3⋅3⋅3⋅3⋅3⋅3⋅5⋅7 | 0 7 1 1 >
76832 2⋅2⋅2⋅2⋅2⋅7⋅7⋅7⋅7 | 5 0 0 4 >
77175 3⋅3⋅5⋅5⋅7⋅7⋅7 | 0 2 2 3 >
78400 2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅7⋅7 | 6 0 2 2 >
78750 2⋅3⋅3⋅5⋅5⋅5⋅5⋅7 | 1 2 4 1 >
79380 2⋅2⋅3⋅3⋅3⋅3⋅5⋅7⋅7 | 2 4 1 2 >
80640 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅7 | 8 2 1 1 >
81648 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅7 | 4 6 0 1 >
82320 2⋅2⋅2⋅2⋅3⋅5⋅7⋅7⋅7 | 4 1 1 3 >
83349 3⋅3⋅3⋅3⋅3⋅7⋅7⋅7 | 0 5 0 3 >
84000 2⋅2⋅2⋅2⋅2⋅3⋅5⋅5⋅5⋅7 | 5 1 3 1 >
84035 5⋅7⋅7⋅7⋅7⋅7 | 0 0 1 5 >
84672 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅7⋅7 | 6 3 0 2 >
85050 2⋅3⋅3⋅3⋅3⋅3⋅5⋅5⋅7 | 1 5 2 1 >
85750 2⋅5⋅5⋅5⋅7⋅7⋅7 | 1 0 3 3 >
86016 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅7 | 12 1 0 1 >
86436 2⋅2⋅3⋅3⋅7⋅7⋅7⋅7 | 2 2 0 4 >
87500 2⋅2⋅5⋅5⋅5⋅5⋅5⋅7 | 2 0 5 1 >
87808 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅7⋅7⋅7 | 8 0 0 3 >
88200 2⋅2⋅2⋅3⋅3⋅5⋅5⋅7⋅7 | 3 2 2 2 >
89600 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅7 | 9 0 2 1 >
90720 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅5⋅7 | 5 4 1 1 >
91854 2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅7 | 1 8 0 1 >
91875 3⋅5⋅5⋅5⋅5⋅7⋅7 | 0 1 4 2 >
92610 2⋅3⋅3⋅3⋅5⋅7⋅7⋅7 | 1 3 1 3 >
94080 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅7⋅7 | 7 1 1 2 >
94500 2⋅2⋅3⋅3⋅3⋅5⋅5⋅5⋅7 | 2 3 3 1 >
95256 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅7⋅7 | 3 5 0 2 >
96040 2⋅2⋅2⋅5⋅7⋅7⋅7⋅7 | 3 0 1 4 >
96768 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅7 | 9 3 0 1 >
98000 2⋅2⋅2⋅2⋅5⋅5⋅5⋅7⋅7 | 4 0 3 2 >
98784 2⋅2⋅2⋅2⋅2⋅3⋅3⋅7⋅7⋅7 | 5 2 0 3 >
99225 3⋅3⋅3⋅3⋅5⋅5⋅7⋅7 | 0 4 2 2 >