List of 7-limit factorizations

From Xenharmonic Wiki
Jump to navigation Jump to search

This list includes prime factorizations and monzos of all numbers from 1 to 99999 which are divisible by 7, and not divisible by any larger prime number.

integer factorization monzo
7 7 [0 0 0 1
14 2⋅7 [1 0 0 1
21 3⋅7 [0 1 0 1
28 2⋅2⋅7 [2 0 0 1
35 5⋅7 [0 0 1 1
42 2⋅3⋅7 [1 1 0 1
49 7⋅7 [0 0 0 2
56 2⋅2⋅2⋅7 [3 0 0 1
63 3⋅3⋅7 [0 2 0 1
70 2⋅5⋅7 [1 0 1 1
84 2⋅2⋅3⋅7 [2 1 0 1
98 2⋅7⋅7 [1 0 0 2
105 3⋅5⋅7 [0 1 1 1
112 2⋅2⋅2⋅2⋅7 [4 0 0 1
126 2⋅3⋅3⋅7 [1 2 0 1
140 2⋅2⋅5⋅7 [2 0 1 1
147 3⋅7⋅7 [0 1 0 2
168 2⋅2⋅2⋅3⋅7 [3 1 0 1
175 5⋅5⋅7 [0 0 2 1
189 3⋅3⋅3⋅7 [0 3 0 1
196 2⋅2⋅7⋅7 [2 0 0 2
210 2⋅3⋅5⋅7 [1 1 1 1
224 2⋅2⋅2⋅2⋅2⋅7 [5 0 0 1
245 5⋅7⋅7 [0 0 1 2
252 2⋅2⋅3⋅3⋅7 [2 2 0 1
280 2⋅2⋅2⋅5⋅7 [3 0 1 1
294 2⋅3⋅7⋅7 [1 1 0 2
315 3⋅3⋅5⋅7 [0 2 1 1
336 2⋅2⋅2⋅2⋅3⋅7 [4 1 0 1
343 7⋅7⋅7 [0 0 0 3
350 2⋅5⋅5⋅7 [1 0 2 1
378 2⋅3⋅3⋅3⋅7 [1 3 0 1
392 2⋅2⋅2⋅7⋅7 [3 0 0 2
420 2⋅2⋅3⋅5⋅7 [2 1 1 1
441 3⋅3⋅7⋅7 [0 2 0 2
448 2⋅2⋅2⋅2⋅2⋅2⋅7 [6 0 0 1
490 2⋅5⋅7⋅7 [1 0 1 2
504 2⋅2⋅2⋅3⋅3⋅7 [3 2 0 1
525 3⋅5⋅5⋅7 [0 1 2 1
560 2⋅2⋅2⋅2⋅5⋅7 [4 0 1 1
567 3⋅3⋅3⋅3⋅7 [0 4 0 1
588 2⋅2⋅3⋅7⋅7 [2 1 0 2
630 2⋅3⋅3⋅5⋅7 [1 2 1 1
672 2⋅2⋅2⋅2⋅2⋅3⋅7 [5 1 0 1
686 2⋅7⋅7⋅7 [1 0 0 3
700 2⋅2⋅5⋅5⋅7 [2 0 2 1
735 3⋅5⋅7⋅7 [0 1 1 2
756 2⋅2⋅3⋅3⋅3⋅7 [2 3 0 1
784 2⋅2⋅2⋅2⋅7⋅7 [4 0 0 2
840 2⋅2⋅2⋅3⋅5⋅7 [3 1 1 1
875 5⋅5⋅5⋅7 [0 0 3 1
882 2⋅3⋅3⋅7⋅7 [1 2 0 2
896 2⋅2⋅2⋅2⋅2⋅2⋅2⋅7 [7 0 0 1
945 3⋅3⋅3⋅5⋅7 [0 3 1 1
980 2⋅2⋅5⋅7⋅7 [2 0 1 2
1008 2⋅2⋅2⋅2⋅3⋅3⋅7 [4 2 0 1
1029 3⋅7⋅7⋅7 [0 1 0 3
1050 2⋅3⋅5⋅5⋅7 [1 1 2 1
1120 2⋅2⋅2⋅2⋅2⋅5⋅7 [5 0 1 1
1134 2⋅3⋅3⋅3⋅3⋅7 [1 4 0 1
1176 2⋅2⋅2⋅3⋅7⋅7 [3 1 0 2
1225 5⋅5⋅7⋅7 [0 0 2 2
1260 2⋅2⋅3⋅3⋅5⋅7 [2 2 1 1
1323 3⋅3⋅3⋅7⋅7 [0 3 0 2
1344 2⋅2⋅2⋅2⋅2⋅2⋅3⋅7 [6 1 0 1
1372 2⋅2⋅7⋅7⋅7 [2 0 0 3
1400 2⋅2⋅2⋅5⋅5⋅7 [3 0 2 1
1470 2⋅3⋅5⋅7⋅7 [1 1 1 2
1512 2⋅2⋅2⋅3⋅3⋅3⋅7 [3 3 0 1
1568 2⋅2⋅2⋅2⋅2⋅7⋅7 [5 0 0 2
1575 3⋅3⋅5⋅5⋅7 [0 2 2 1
1680 2⋅2⋅2⋅2⋅3⋅5⋅7 [4 1 1 1
1701 3⋅3⋅3⋅3⋅3⋅7 [0 5 0 1
1715 5⋅7⋅7⋅7 [0 0 1 3
1750 2⋅5⋅5⋅5⋅7 [1 0 3 1
1764 2⋅2⋅3⋅3⋅7⋅7 [2 2 0 2
1792 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅7 [8 0 0 1
1890 2⋅3⋅3⋅3⋅5⋅7 [1 3 1 1
1960 2⋅2⋅2⋅5⋅7⋅7 [3 0 1 2
2016 2⋅2⋅2⋅2⋅2⋅3⋅3⋅7 [5 2 0 1
2058 2⋅3⋅7⋅7⋅7 [1 1 0 3
2100 2⋅2⋅3⋅5⋅5⋅7 [2 1 2 1
2205 3⋅3⋅5⋅7⋅7 [0 2 1 2
2240 2⋅2⋅2⋅2⋅2⋅2⋅5⋅7 [6 0 1 1
2268 2⋅2⋅3⋅3⋅3⋅3⋅7 [2 4 0 1
2352 2⋅2⋅2⋅2⋅3⋅7⋅7 [4 1 0 2
2401 7⋅7⋅7⋅7 [0 0 0 4
2450 2⋅5⋅5⋅7⋅7 [1 0 2 2
2520 2⋅2⋅2⋅3⋅3⋅5⋅7 [3 2 1 1
2625 3⋅5⋅5⋅5⋅7 [0 1 3 1
2646 2⋅3⋅3⋅3⋅7⋅7 [1 3 0 2
2688 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅7 [7 1 0 1
2744 2⋅2⋅2⋅7⋅7⋅7 [3 0 0 3
2800 2⋅2⋅2⋅2⋅5⋅5⋅7 [4 0 2 1
2835 3⋅3⋅3⋅3⋅5⋅7 [0 4 1 1
2940 2⋅2⋅3⋅5⋅7⋅7 [2 1 1 2
3024 2⋅2⋅2⋅2⋅3⋅3⋅3⋅7 [4 3 0 1
3087 3⋅3⋅7⋅7⋅7 [0 2 0 3
3136 2⋅2⋅2⋅2⋅2⋅2⋅7⋅7 [6 0 0 2
3150 2⋅3⋅3⋅5⋅5⋅7 [1 2 2 1
3360 2⋅2⋅2⋅2⋅2⋅3⋅5⋅7 [5 1 1 1
3402 2⋅3⋅3⋅3⋅3⋅3⋅7 [1 5 0 1
3430 2⋅5⋅7⋅7⋅7 [1 0 1 3
3500 2⋅2⋅5⋅5⋅5⋅7 [2 0 3 1
3528 2⋅2⋅2⋅3⋅3⋅7⋅7 [3 2 0 2
3584 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅7 [9 0 0 1
3675 3⋅5⋅5⋅7⋅7 [0 1 2 2
3780 2⋅2⋅3⋅3⋅3⋅5⋅7 [2 3 1 1
3920 2⋅2⋅2⋅2⋅5⋅7⋅7 [4 0 1 2
3969 3⋅3⋅3⋅3⋅7⋅7 [0 4 0 2
4032 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅7 [6 2 0 1
4116 2⋅2⋅3⋅7⋅7⋅7 [2 1 0 3
4200 2⋅2⋅2⋅3⋅5⋅5⋅7 [3 1 2 1
4375 5⋅5⋅5⋅5⋅7 [0 0 4 1
4410 2⋅3⋅3⋅5⋅7⋅7 [1 2 1 2
4480 2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅7 [7 0 1 1
4536 2⋅2⋅2⋅3⋅3⋅3⋅3⋅7 [3 4 0 1
4704 2⋅2⋅2⋅2⋅2⋅3⋅7⋅7 [5 1 0 2
4725 3⋅3⋅3⋅5⋅5⋅7 [0 3 2 1
4802 2⋅7⋅7⋅7⋅7 [1 0 0 4
4900 2⋅2⋅5⋅5⋅7⋅7 [2 0 2 2
5040 2⋅2⋅2⋅2⋅3⋅3⋅5⋅7 [4 2 1 1
5103 3⋅3⋅3⋅3⋅3⋅3⋅7 [0 6 0 1
5145 3⋅5⋅7⋅7⋅7 [0 1 1 3
5250 2⋅3⋅5⋅5⋅5⋅7 [1 1 3 1
5292 2⋅2⋅3⋅3⋅3⋅7⋅7 [2 3 0 2
5376 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅7 [8 1 0 1
5488 2⋅2⋅2⋅2⋅7⋅7⋅7 [4 0 0 3
5600 2⋅2⋅2⋅2⋅2⋅5⋅5⋅7 [5 0 2 1
5670 2⋅3⋅3⋅3⋅3⋅5⋅7 [1 4 1 1
5880 2⋅2⋅2⋅3⋅5⋅7⋅7 [3 1 1 2
6048 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅7 [5 3 0 1
6125 5⋅5⋅5⋅7⋅7 [0 0 3 2
6174 2⋅3⋅3⋅7⋅7⋅7 [1 2 0 3
6272 2⋅2⋅2⋅2⋅2⋅2⋅2⋅7⋅7 [7 0 0 2
6300 2⋅2⋅3⋅3⋅5⋅5⋅7 [2 2 2 1
6615 3⋅3⋅3⋅5⋅7⋅7 [0 3 1 2
6720 2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅7 [6 1 1 1
6804 2⋅2⋅3⋅3⋅3⋅3⋅3⋅7 [2 5 0 1
6860 2⋅2⋅5⋅7⋅7⋅7 [2 0 1 3
7000 2⋅2⋅2⋅5⋅5⋅5⋅7 [3 0 3 1
7056 2⋅2⋅2⋅2⋅3⋅3⋅7⋅7 [4 2 0 2
7168 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅7 [10 0 0 1
7203 3⋅7⋅7⋅7⋅7 [0 1 0 4
7350 2⋅3⋅5⋅5⋅7⋅7 [1 1 2 2
7560 2⋅2⋅2⋅3⋅3⋅3⋅5⋅7 [3 3 1 1
7840 2⋅2⋅2⋅2⋅2⋅5⋅7⋅7 [5 0 1 2
7875 3⋅3⋅5⋅5⋅5⋅7 [0 2 3 1
7938 2⋅3⋅3⋅3⋅3⋅7⋅7 [1 4 0 2
8064 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅7 [7 2 0 1
8232 2⋅2⋅2⋅3⋅7⋅7⋅7 [3 1 0 3
8400 2⋅2⋅2⋅2⋅3⋅5⋅5⋅7 [4 1 2 1
8505 3⋅3⋅3⋅3⋅3⋅5⋅7 [0 5 1 1
8575 5⋅5⋅7⋅7⋅7 [0 0 2 3
8750 2⋅5⋅5⋅5⋅5⋅7 [1 0 4 1
8820 2⋅2⋅3⋅3⋅5⋅7⋅7 [2 2 1 2
8960 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅7 [8 0 1 1
9072 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅7 [4 4 0 1
9261 3⋅3⋅3⋅7⋅7⋅7 [0 3 0 3
9408 2⋅2⋅2⋅2⋅2⋅2⋅3⋅7⋅7 [6 1 0 2
9450 2⋅3⋅3⋅3⋅5⋅5⋅7 [1 3 2 1
9604 2⋅2⋅7⋅7⋅7⋅7 [2 0 0 4
9800 2⋅2⋅2⋅5⋅5⋅7⋅7 [3 0 2 2
10080 2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅7 [5 2 1 1
10206 2⋅3⋅3⋅3⋅3⋅3⋅3⋅7 [1 6 0 1
10290 2⋅3⋅5⋅7⋅7⋅7 [1 1 1 3
10500 2⋅2⋅3⋅5⋅5⋅5⋅7 [2 1 3 1
10584 2⋅2⋅2⋅3⋅3⋅3⋅7⋅7 [3 3 0 2
10752 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅7 [9 1 0 1
10976 2⋅2⋅2⋅2⋅2⋅7⋅7⋅7 [5 0 0 3
11025 3⋅3⋅5⋅5⋅7⋅7 [0 2 2 2
11200 2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅7 [6 0 2 1
11340 2⋅2⋅3⋅3⋅3⋅3⋅5⋅7 [2 4 1 1
11760 2⋅2⋅2⋅2⋅3⋅5⋅7⋅7 [4 1 1 2
11907 3⋅3⋅3⋅3⋅3⋅7⋅7 [0 5 0 2
12005 5⋅7⋅7⋅7⋅7 [0 0 1 4
12096 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅7 [6 3 0 1
12250 2⋅5⋅5⋅5⋅7⋅7 [1 0 3 2
12348 2⋅2⋅3⋅3⋅7⋅7⋅7 [2 2 0 3
12544 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅7⋅7 [8 0 0 2
12600 2⋅2⋅2⋅3⋅3⋅5⋅5⋅7 [3 2 2 1
13125 3⋅5⋅5⋅5⋅5⋅7 [0 1 4 1
13230 2⋅3⋅3⋅3⋅5⋅7⋅7 [1 3 1 2
13440 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅7 [7 1 1 1
13608 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅7 [3 5 0 1
13720 2⋅2⋅2⋅5⋅7⋅7⋅7 [3 0 1 3
14000 2⋅2⋅2⋅2⋅5⋅5⋅5⋅7 [4 0 3 1
14112 2⋅2⋅2⋅2⋅2⋅3⋅3⋅7⋅7 [5 2 0 2
14175 3⋅3⋅3⋅3⋅5⋅5⋅7 [0 4 2 1
14336 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅7 [11 0 0 1
14406 2⋅3⋅7⋅7⋅7⋅7 [1 1 0 4
14700 2⋅2⋅3⋅5⋅5⋅7⋅7 [2 1 2 2
15120 2⋅2⋅2⋅2⋅3⋅3⋅3⋅5⋅7 [4 3 1 1
15309 3⋅3⋅3⋅3⋅3⋅3⋅3⋅7 [0 7 0 1
15435 3⋅3⋅5⋅7⋅7⋅7 [0 2 1 3
15680 2⋅2⋅2⋅2⋅2⋅2⋅5⋅7⋅7 [6 0 1 2
15750 2⋅3⋅3⋅5⋅5⋅5⋅7 [1 2 3 1
15876 2⋅2⋅3⋅3⋅3⋅3⋅7⋅7 [2 4 0 2
16128 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅7 [8 2 0 1
16464 2⋅2⋅2⋅2⋅3⋅7⋅7⋅7 [4 1 0 3
16800 2⋅2⋅2⋅2⋅2⋅3⋅5⋅5⋅7 [5 1 2 1
16807 7⋅7⋅7⋅7⋅7 [0 0 0 5
17010 2⋅3⋅3⋅3⋅3⋅3⋅5⋅7 [1 5 1 1
17150 2⋅5⋅5⋅7⋅7⋅7 [1 0 2 3
17500 2⋅2⋅5⋅5⋅5⋅5⋅7 [2 0 4 1
17640 2⋅2⋅2⋅3⋅3⋅5⋅7⋅7 [3 2 1 2
17920 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅7 [9 0 1 1
18144 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅7 [5 4 0 1
18375 3⋅5⋅5⋅5⋅7⋅7 [0 1 3 2
18522 2⋅3⋅3⋅3⋅7⋅7⋅7 [1 3 0 3
18816 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅7⋅7 [7 1 0 2
18900 2⋅2⋅3⋅3⋅3⋅5⋅5⋅7 [2 3 2 1
19208 2⋅2⋅2⋅7⋅7⋅7⋅7 [3 0 0 4
19600 2⋅2⋅2⋅2⋅5⋅5⋅7⋅7 [4 0 2 2
19845 3⋅3⋅3⋅3⋅5⋅7⋅7 [0 4 1 2
20160 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅7 [6 2 1 1
20412 2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅7 [2 6 0 1
20580 2⋅2⋅3⋅5⋅7⋅7⋅7 [2 1 1 3
21000 2⋅2⋅2⋅3⋅5⋅5⋅5⋅7 [3 1 3 1
21168 2⋅2⋅2⋅2⋅3⋅3⋅3⋅7⋅7 [4 3 0 2
21504 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅7 [10 1 0 1
21609 3⋅3⋅7⋅7⋅7⋅7 [0 2 0 4
21875 5⋅5⋅5⋅5⋅5⋅7 [0 0 5 1
21952 2⋅2⋅2⋅2⋅2⋅2⋅7⋅7⋅7 [6 0 0 3
22050 2⋅3⋅3⋅5⋅5⋅7⋅7 [1 2 2 2
22400 2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅7 [7 0 2 1
22680 2⋅2⋅2⋅3⋅3⋅3⋅3⋅5⋅7 [3 4 1 1
23520 2⋅2⋅2⋅2⋅2⋅3⋅5⋅7⋅7 [5 1 1 2
23625 3⋅3⋅3⋅5⋅5⋅5⋅7 [0 3 3 1
23814 2⋅3⋅3⋅3⋅3⋅3⋅7⋅7 [1 5 0 2
24010 2⋅5⋅7⋅7⋅7⋅7 [1 0 1 4
24192 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅7 [7 3 0 1
24500 2⋅2⋅5⋅5⋅5⋅7⋅7 [2 0 3 2
24696 2⋅2⋅2⋅3⋅3⋅7⋅7⋅7 [3 2 0 3
25088 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅7⋅7 [9 0 0 2
25200 2⋅2⋅2⋅2⋅3⋅3⋅5⋅5⋅7 [4 2 2 1
25515 3⋅3⋅3⋅3⋅3⋅3⋅5⋅7 [0 6 1 1
25725 3⋅5⋅5⋅7⋅7⋅7 [0 1 2 3
26250 2⋅3⋅5⋅5⋅5⋅5⋅7 [1 1 4 1
26460 2⋅2⋅3⋅3⋅3⋅5⋅7⋅7 [2 3 1 2
26880 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅7 [8 1 1 1
27216 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅7 [4 5 0 1
27440 2⋅2⋅2⋅2⋅5⋅7⋅7⋅7 [4 0 1 3
27783 3⋅3⋅3⋅3⋅7⋅7⋅7 [0 4 0 3
28000 2⋅2⋅2⋅2⋅2⋅5⋅5⋅5⋅7 [5 0 3 1
28224 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅7⋅7 [6 2 0 2
28350 2⋅3⋅3⋅3⋅3⋅5⋅5⋅7 [1 4 2 1
28672 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅7 [12 0 0 1
28812 2⋅2⋅3⋅7⋅7⋅7⋅7 [2 1 0 4
29400 2⋅2⋅2⋅3⋅5⋅5⋅7⋅7 [3 1 2 2
30240 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅5⋅7 [5 3 1 1
30618 2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅7 [1 7 0 1
30625 5⋅5⋅5⋅5⋅7⋅7 [0 0 4 2
30870 2⋅3⋅3⋅5⋅7⋅7⋅7 [1 2 1 3
31360 2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅7⋅7 [7 0 1 2
31500 2⋅2⋅3⋅3⋅5⋅5⋅5⋅7 [2 2 3 1
31752 2⋅2⋅2⋅3⋅3⋅3⋅3⋅7⋅7 [3 4 0 2
32256 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅7 [9 2 0 1
32928 2⋅2⋅2⋅2⋅2⋅3⋅7⋅7⋅7 [5 1 0 3
33075 3⋅3⋅3⋅5⋅5⋅7⋅7 [0 3 2 2
33600 2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅5⋅7 [6 1 2 1
33614 2⋅7⋅7⋅7⋅7⋅7 [1 0 0 5
34020 2⋅2⋅3⋅3⋅3⋅3⋅3⋅5⋅7 [2 5 1 1
34300 2⋅2⋅5⋅5⋅7⋅7⋅7 [2 0 2 3
35000 2⋅2⋅2⋅5⋅5⋅5⋅5⋅7 [3 0 4 1
35280 2⋅2⋅2⋅2⋅3⋅3⋅5⋅7⋅7 [4 2 1 2
35721 3⋅3⋅3⋅3⋅3⋅3⋅7⋅7 [0 6 0 2
35840 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅7 [10 0 1 1
36015 3⋅5⋅7⋅7⋅7⋅7 [0 1 1 4
36288 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅7 [6 4 0 1
36750 2⋅3⋅5⋅5⋅5⋅7⋅7 [1 1 3 2
37044 2⋅2⋅3⋅3⋅3⋅7⋅7⋅7 [2 3 0 3
37632 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅7⋅7 [8 1 0 2
37800 2⋅2⋅2⋅3⋅3⋅3⋅5⋅5⋅7 [3 3 2 1
38416 2⋅2⋅2⋅2⋅7⋅7⋅7⋅7 [4 0 0 4
39200 2⋅2⋅2⋅2⋅2⋅5⋅5⋅7⋅7 [5 0 2 2
39375 3⋅3⋅5⋅5⋅5⋅5⋅7 [0 2 4 1
39690 2⋅3⋅3⋅3⋅3⋅5⋅7⋅7 [1 4 1 2
40320 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅7 [7 2 1 1
40824 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅7 [3 6 0 1
41160 2⋅2⋅2⋅3⋅5⋅7⋅7⋅7 [3 1 1 3
42000 2⋅2⋅2⋅2⋅3⋅5⋅5⋅5⋅7 [4 1 3 1
42336 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅7⋅7 [5 3 0 2
42525 3⋅3⋅3⋅3⋅3⋅5⋅5⋅7 [0 5 2 1
42875 5⋅5⋅5⋅7⋅7⋅7 [0 0 3 3
43008 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅7 [11 1 0 1
43218 2⋅3⋅3⋅7⋅7⋅7⋅7 [1 2 0 4
43750 2⋅5⋅5⋅5⋅5⋅5⋅7 [1 0 5 1
43904 2⋅2⋅2⋅2⋅2⋅2⋅2⋅7⋅7⋅7 [7 0 0 3
44100 2⋅2⋅3⋅3⋅5⋅5⋅7⋅7 [2 2 2 2
44800 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅7 [8 0 2 1
45360 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅5⋅7 [4 4 1 1
45927 3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅7 [0 8 0 1
46305 3⋅3⋅3⋅5⋅7⋅7⋅7 [0 3 1 3
47040 2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅7⋅7 [6 1 1 2
47250 2⋅3⋅3⋅3⋅5⋅5⋅5⋅7 [1 3 3 1
47628 2⋅2⋅3⋅3⋅3⋅3⋅3⋅7⋅7 [2 5 0 2
48020 2⋅2⋅5⋅7⋅7⋅7⋅7 [2 0 1 4
48384 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅7 [8 3 0 1
49000 2⋅2⋅2⋅5⋅5⋅5⋅7⋅7 [3 0 3 2
49392 2⋅2⋅2⋅2⋅3⋅3⋅7⋅7⋅7 [4 2 0 3
50176 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅7⋅7 [10 0 0 2
50400 2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅5⋅7 [5 2 2 1
50421 3⋅7⋅7⋅7⋅7⋅7 [0 1 0 5
51030 2⋅3⋅3⋅3⋅3⋅3⋅3⋅5⋅7 [1 6 1 1
51450 2⋅3⋅5⋅5⋅7⋅7⋅7 [1 1 2 3
52500 2⋅2⋅3⋅5⋅5⋅5⋅5⋅7 [2 1 4 1
52920 2⋅2⋅2⋅3⋅3⋅3⋅5⋅7⋅7 [3 3 1 2
53760 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅7 [9 1 1 1
54432 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅7 [5 5 0 1
54880 2⋅2⋅2⋅2⋅2⋅5⋅7⋅7⋅7 [5 0 1 3
55125 3⋅3⋅5⋅5⋅5⋅7⋅7 [0 2 3 2
55566 2⋅3⋅3⋅3⋅3⋅7⋅7⋅7 [1 4 0 3
56000 2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅5⋅7 [6 0 3 1
56448 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅7⋅7 [7 2 0 2
56700 2⋅2⋅3⋅3⋅3⋅3⋅5⋅5⋅7 [2 4 2 1
57344 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅7 [13 0 0 1
57624 2⋅2⋅2⋅3⋅7⋅7⋅7⋅7 [3 1 0 4
58800 2⋅2⋅2⋅2⋅3⋅5⋅5⋅7⋅7 [4 1 2 2
59535 3⋅3⋅3⋅3⋅3⋅5⋅7⋅7 [0 5 1 2
60025 5⋅5⋅7⋅7⋅7⋅7 [0 0 2 4
60480 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅5⋅7 [6 3 1 1
61236 2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅7 [2 7 0 1
61250 2⋅5⋅5⋅5⋅5⋅7⋅7 [1 0 4 2
61740 2⋅2⋅3⋅3⋅5⋅7⋅7⋅7 [2 2 1 3
62720 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅7⋅7 [8 0 1 2
63000 2⋅2⋅2⋅3⋅3⋅5⋅5⋅5⋅7 [3 2 3 1
63504 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅7⋅7 [4 4 0 2
64512 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅7 [10 2 0 1
64827 3⋅3⋅3⋅7⋅7⋅7⋅7 [0 3 0 4
65625 3⋅5⋅5⋅5⋅5⋅5⋅7 [0 1 5 1
65856 2⋅2⋅2⋅2⋅2⋅2⋅3⋅7⋅7⋅7 [6 1 0 3
66150 2⋅3⋅3⋅3⋅5⋅5⋅7⋅7 [1 3 2 2
67200 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅5⋅7 [7 1 2 1
67228 2⋅2⋅7⋅7⋅7⋅7⋅7 [2 0 0 5
68040 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅5⋅7 [3 5 1 1
68600 2⋅2⋅2⋅5⋅5⋅7⋅7⋅7 [3 0 2 3
70000 2⋅2⋅2⋅2⋅5⋅5⋅5⋅5⋅7 [4 0 4 1
70560 2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅7⋅7 [5 2 1 2
70875 3⋅3⋅3⋅3⋅5⋅5⋅5⋅7 [0 4 3 1
71442 2⋅3⋅3⋅3⋅3⋅3⋅3⋅7⋅7 [1 6 0 2
71680 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅7 [11 0 1 1
72030 2⋅3⋅5⋅7⋅7⋅7⋅7 [1 1 1 4
72576 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅7 [7 4 0 1
73500 2⋅2⋅3⋅5⋅5⋅5⋅7⋅7 [2 1 3 2
74088 2⋅2⋅2⋅3⋅3⋅3⋅7⋅7⋅7 [3 3 0 3
75264 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅7⋅7 [9 1 0 2
75600 2⋅2⋅2⋅2⋅3⋅3⋅3⋅5⋅5⋅7 [4 3 2 1
76545 3⋅3⋅3⋅3⋅3⋅3⋅3⋅5⋅7 [0 7 1 1
76832 2⋅2⋅2⋅2⋅2⋅7⋅7⋅7⋅7 [5 0 0 4
77175 3⋅3⋅5⋅5⋅7⋅7⋅7 [0 2 2 3
78400 2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅7⋅7 [6 0 2 2
78750 2⋅3⋅3⋅5⋅5⋅5⋅5⋅7 [1 2 4 1
79380 2⋅2⋅3⋅3⋅3⋅3⋅5⋅7⋅7 [2 4 1 2
80640 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅7 [8 2 1 1
81648 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅7 [4 6 0 1
82320 2⋅2⋅2⋅2⋅3⋅5⋅7⋅7⋅7 [4 1 1 3
83349 3⋅3⋅3⋅3⋅3⋅7⋅7⋅7 [0 5 0 3
84000 2⋅2⋅2⋅2⋅2⋅3⋅5⋅5⋅5⋅7 [5 1 3 1
84035 5⋅7⋅7⋅7⋅7⋅7 [0 0 1 5
84672 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅7⋅7 [6 3 0 2
85050 2⋅3⋅3⋅3⋅3⋅3⋅5⋅5⋅7 [1 5 2 1
85750 2⋅5⋅5⋅5⋅7⋅7⋅7 [1 0 3 3
86016 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅7 [12 1 0 1
86436 2⋅2⋅3⋅3⋅7⋅7⋅7⋅7 [2 2 0 4
87500 2⋅2⋅5⋅5⋅5⋅5⋅5⋅7 [2 0 5 1
87808 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅7⋅7⋅7 [8 0 0 3
88200 2⋅2⋅2⋅3⋅3⋅5⋅5⋅7⋅7 [3 2 2 2
89600 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅7 [9 0 2 1
90720 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅5⋅7 [5 4 1 1
91854 2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅7 [1 8 0 1
91875 3⋅5⋅5⋅5⋅5⋅7⋅7 [0 1 4 2
92610 2⋅3⋅3⋅3⋅5⋅7⋅7⋅7 [1 3 1 3
94080 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅7⋅7 [7 1 1 2
94500 2⋅2⋅3⋅3⋅3⋅5⋅5⋅5⋅7 [2 3 3 1
95256 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅7⋅7 [3 5 0 2
96040 2⋅2⋅2⋅5⋅7⋅7⋅7⋅7 [3 0 1 4
96768 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅7 [9 3 0 1
98000 2⋅2⋅2⋅2⋅5⋅5⋅5⋅7⋅7 [4 0 3 2
98784 2⋅2⋅2⋅2⋅2⋅3⋅3⋅7⋅7⋅7 [5 2 0 3
99225 3⋅3⋅3⋅3⋅5⋅5⋅7⋅7 [0 4 2 2


Icon-Todo.png Todo: clarify, improve synopsis
Explain the musical uses for this table in the introduction.
Icon-Todo.png Todo: link
Link to this table from relevant pages, and add a see also at the end to give readers somewhere to go next.