List of 5-limit factorizations
Jump to navigation
Jump to search
This list includes prime factorizations and monzos of all numbers from 1 to 99999 which are divisible by 5, and not divisible by any larger prime number.
integer | factorization | monzo |
---|---|---|
5 | 5 | [0 0 1⟩ |
10 | 2⋅5 | [1 0 1⟩ |
15 | 3⋅5 | [0 1 1⟩ |
20 | 2⋅2⋅5 | [2 0 1⟩ |
25 | 5⋅5 | [0 0 2⟩ |
30 | 2⋅3⋅5 | [1 1 1⟩ |
40 | 2⋅2⋅2⋅5 | [3 0 1⟩ |
45 | 3⋅3⋅5 | [0 2 1⟩ |
50 | 2⋅5⋅5 | [1 0 2⟩ |
60 | 2⋅2⋅3⋅5 | [2 1 1⟩ |
75 | 3⋅5⋅5 | [0 1 2⟩ |
80 | 2⋅2⋅2⋅2⋅5 | [4 0 1⟩ |
90 | 2⋅3⋅3⋅5 | [1 2 1⟩ |
100 | 2⋅2⋅5⋅5 | [2 0 2⟩ |
120 | 2⋅2⋅2⋅3⋅5 | [3 1 1⟩ |
125 | 5⋅5⋅5 | [0 0 3⟩ |
135 | 3⋅3⋅3⋅5 | [0 3 1⟩ |
150 | 2⋅3⋅5⋅5 | [1 1 2⟩ |
160 | 2⋅2⋅2⋅2⋅2⋅5 | [5 0 1⟩ |
180 | 2⋅2⋅3⋅3⋅5 | [2 2 1⟩ |
200 | 2⋅2⋅2⋅5⋅5 | [3 0 2⟩ |
225 | 3⋅3⋅5⋅5 | [0 2 2⟩ |
240 | 2⋅2⋅2⋅2⋅3⋅5 | [4 1 1⟩ |
250 | 2⋅5⋅5⋅5 | [1 0 3⟩ |
270 | 2⋅3⋅3⋅3⋅5 | [1 3 1⟩ |
300 | 2⋅2⋅3⋅5⋅5 | [2 1 2⟩ |
320 | 2⋅2⋅2⋅2⋅2⋅2⋅5 | [6 0 1⟩ |
360 | 2⋅2⋅2⋅3⋅3⋅5 | [3 2 1⟩ |
375 | 3⋅5⋅5⋅5 | [0 1 3⟩ |
400 | 2⋅2⋅2⋅2⋅5⋅5 | [4 0 2⟩ |
405 | 3⋅3⋅3⋅3⋅5 | [0 4 1⟩ |
450 | 2⋅3⋅3⋅5⋅5 | [1 2 2⟩ |
480 | 2⋅2⋅2⋅2⋅2⋅3⋅5 | [5 1 1⟩ |
500 | 2⋅2⋅5⋅5⋅5 | [2 0 3⟩ |
540 | 2⋅2⋅3⋅3⋅3⋅5 | [2 3 1⟩ |
600 | 2⋅2⋅2⋅3⋅5⋅5 | [3 1 2⟩ |
625 | 5⋅5⋅5⋅5 | [0 0 4⟩ |
640 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅5 | [7 0 1⟩ |
675 | 3⋅3⋅3⋅5⋅5 | [0 3 2⟩ |
720 | 2⋅2⋅2⋅2⋅3⋅3⋅5 | [4 2 1⟩ |
750 | 2⋅3⋅5⋅5⋅5 | [1 1 3⟩ |
800 | 2⋅2⋅2⋅2⋅2⋅5⋅5 | [5 0 2⟩ |
810 | 2⋅3⋅3⋅3⋅3⋅5 | [1 4 1⟩ |
900 | 2⋅2⋅3⋅3⋅5⋅5 | [2 2 2⟩ |
960 | 2⋅2⋅2⋅2⋅2⋅2⋅3⋅5 | [6 1 1⟩ |
1000 | 2⋅2⋅2⋅5⋅5⋅5 | [3 0 3⟩ |
1080 | 2⋅2⋅2⋅3⋅3⋅3⋅5 | [3 3 1⟩ |
1125 | 3⋅3⋅5⋅5⋅5 | [0 2 3⟩ |
1200 | 2⋅2⋅2⋅2⋅3⋅5⋅5 | [4 1 2⟩ |
1215 | 3⋅3⋅3⋅3⋅3⋅5 | [0 5 1⟩ |
1250 | 2⋅5⋅5⋅5⋅5 | [1 0 4⟩ |
1280 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5 | [8 0 1⟩ |
1350 | 2⋅3⋅3⋅3⋅5⋅5 | [1 3 2⟩ |
1440 | 2⋅2⋅2⋅2⋅2⋅3⋅3⋅5 | [5 2 1⟩ |
1500 | 2⋅2⋅3⋅5⋅5⋅5 | [2 1 3⟩ |
1600 | 2⋅2⋅2⋅2⋅2⋅2⋅5⋅5 | [6 0 2⟩ |
1620 | 2⋅2⋅3⋅3⋅3⋅3⋅5 | [2 4 1⟩ |
1800 | 2⋅2⋅2⋅3⋅3⋅5⋅5 | [3 2 2⟩ |
1875 | 3⋅5⋅5⋅5⋅5 | [0 1 4⟩ |
1920 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5 | [7 1 1⟩ |
2000 | 2⋅2⋅2⋅2⋅5⋅5⋅5 | [4 0 3⟩ |
2025 | 3⋅3⋅3⋅3⋅5⋅5 | [0 4 2⟩ |
2160 | 2⋅2⋅2⋅2⋅3⋅3⋅3⋅5 | [4 3 1⟩ |
2250 | 2⋅3⋅3⋅5⋅5⋅5 | [1 2 3⟩ |
2400 | 2⋅2⋅2⋅2⋅2⋅3⋅5⋅5 | [5 1 2⟩ |
2430 | 2⋅3⋅3⋅3⋅3⋅3⋅5 | [1 5 1⟩ |
2500 | 2⋅2⋅5⋅5⋅5⋅5 | [2 0 4⟩ |
2560 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5 | [9 0 1⟩ |
2700 | 2⋅2⋅3⋅3⋅3⋅5⋅5 | [2 3 2⟩ |
2880 | 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5 | [6 2 1⟩ |
3000 | 2⋅2⋅2⋅3⋅5⋅5⋅5 | [3 1 3⟩ |
3125 | 5⋅5⋅5⋅5⋅5 | [0 0 5⟩ |
3200 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5 | [7 0 2⟩ |
3240 | 2⋅2⋅2⋅3⋅3⋅3⋅3⋅5 | [3 4 1⟩ |
3375 | 3⋅3⋅3⋅5⋅5⋅5 | [0 3 3⟩ |
3600 | 2⋅2⋅2⋅2⋅3⋅3⋅5⋅5 | [4 2 2⟩ |
3645 | 3⋅3⋅3⋅3⋅3⋅3⋅5 | [0 6 1⟩ |
3750 | 2⋅3⋅5⋅5⋅5⋅5 | [1 1 4⟩ |
3840 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5 | [8 1 1⟩ |
4000 | 2⋅2⋅2⋅2⋅2⋅5⋅5⋅5 | [5 0 3⟩ |
4050 | 2⋅3⋅3⋅3⋅3⋅5⋅5 | [1 4 2⟩ |
4320 | 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅5 | [5 3 1⟩ |
4500 | 2⋅2⋅3⋅3⋅5⋅5⋅5 | [2 2 3⟩ |
4800 | 2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅5 | [6 1 2⟩ |
4860 | 2⋅2⋅3⋅3⋅3⋅3⋅3⋅5 | [2 5 1⟩ |
5000 | 2⋅2⋅2⋅5⋅5⋅5⋅5 | [3 0 4⟩ |
5120 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5 | [10 0 1⟩ |
5400 | 2⋅2⋅2⋅3⋅3⋅3⋅5⋅5 | [3 3 2⟩ |
5625 | 3⋅3⋅5⋅5⋅5⋅5 | [0 2 4⟩ |
5760 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5 | [7 2 1⟩ |
6000 | 2⋅2⋅2⋅2⋅3⋅5⋅5⋅5 | [4 1 3⟩ |
6075 | 3⋅3⋅3⋅3⋅3⋅5⋅5 | [0 5 2⟩ |
6250 | 2⋅5⋅5⋅5⋅5⋅5 | [1 0 5⟩ |
6400 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5 | [8 0 2⟩ |
6480 | 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅5 | [4 4 1⟩ |
6750 | 2⋅3⋅3⋅3⋅5⋅5⋅5 | [1 3 3⟩ |
7200 | 2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅5 | [5 2 2⟩ |
7290 | 2⋅3⋅3⋅3⋅3⋅3⋅3⋅5 | [1 6 1⟩ |
7500 | 2⋅2⋅3⋅5⋅5⋅5⋅5 | [2 1 4⟩ |
7680 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5 | [9 1 1⟩ |
8000 | 2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅5 | [6 0 3⟩ |
8100 | 2⋅2⋅3⋅3⋅3⋅3⋅5⋅5 | [2 4 2⟩ |
8640 | 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅5 | [6 3 1⟩ |
9000 | 2⋅2⋅2⋅3⋅3⋅5⋅5⋅5 | [3 2 3⟩ |
9375 | 3⋅5⋅5⋅5⋅5⋅5 | [0 1 5⟩ |
9600 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅5 | [7 1 2⟩ |
9720 | 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅5 | [3 5 1⟩ |
10000 | 2⋅2⋅2⋅2⋅5⋅5⋅5⋅5 | [4 0 4⟩ |
10125 | 3⋅3⋅3⋅3⋅5⋅5⋅5 | [0 4 3⟩ |
10240 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5 | [11 0 1⟩ |
10800 | 2⋅2⋅2⋅2⋅3⋅3⋅3⋅5⋅5 | [4 3 2⟩ |
10935 | 3⋅3⋅3⋅3⋅3⋅3⋅3⋅5 | [0 7 1⟩ |
11250 | 2⋅3⋅3⋅5⋅5⋅5⋅5 | [1 2 4⟩ |
11520 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5 | [8 2 1⟩ |
12000 | 2⋅2⋅2⋅2⋅2⋅3⋅5⋅5⋅5 | [5 1 3⟩ |
12150 | 2⋅3⋅3⋅3⋅3⋅3⋅5⋅5 | [1 5 2⟩ |
12500 | 2⋅2⋅5⋅5⋅5⋅5⋅5 | [2 0 5⟩ |
12800 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5 | [9 0 2⟩ |
12960 | 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅5 | [5 4 1⟩ |
13500 | 2⋅2⋅3⋅3⋅3⋅5⋅5⋅5 | [2 3 3⟩ |
14400 | 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅5 | [6 2 2⟩ |
14580 | 2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅5 | [2 6 1⟩ |
15000 | 2⋅2⋅2⋅3⋅5⋅5⋅5⋅5 | [3 1 4⟩ |
15360 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5 | [10 1 1⟩ |
15625 | 5⋅5⋅5⋅5⋅5⋅5 | [0 0 6⟩ |
16000 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅5 | [7 0 3⟩ |
16200 | 2⋅2⋅2⋅3⋅3⋅3⋅3⋅5⋅5 | [3 4 2⟩ |
16875 | 3⋅3⋅3⋅5⋅5⋅5⋅5 | [0 3 4⟩ |
17280 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅5 | [7 3 1⟩ |
18000 | 2⋅2⋅2⋅2⋅3⋅3⋅5⋅5⋅5 | [4 2 3⟩ |
18225 | 3⋅3⋅3⋅3⋅3⋅3⋅5⋅5 | [0 6 2⟩ |
18750 | 2⋅3⋅5⋅5⋅5⋅5⋅5 | [1 1 5⟩ |
19200 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅5 | [8 1 2⟩ |
19440 | 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅5 | [4 5 1⟩ |
20000 | 2⋅2⋅2⋅2⋅2⋅5⋅5⋅5⋅5 | [5 0 4⟩ |
20250 | 2⋅3⋅3⋅3⋅3⋅5⋅5⋅5 | [1 4 3⟩ |
20480 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5 | [12 0 1⟩ |
21600 | 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅5⋅5 | [5 3 2⟩ |
21870 | 2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅5 | [1 7 1⟩ |
22500 | 2⋅2⋅3⋅3⋅5⋅5⋅5⋅5 | [2 2 4⟩ |
23040 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5 | [9 2 1⟩ |
24000 | 2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅5⋅5 | [6 1 3⟩ |
24300 | 2⋅2⋅3⋅3⋅3⋅3⋅3⋅5⋅5 | [2 5 2⟩ |
25000 | 2⋅2⋅2⋅5⋅5⋅5⋅5⋅5 | [3 0 5⟩ |
25600 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5 | [10 0 2⟩ |
25920 | 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅5 | [6 4 1⟩ |
27000 | 2⋅2⋅2⋅3⋅3⋅3⋅5⋅5⋅5 | [3 3 3⟩ |
28125 | 3⋅3⋅5⋅5⋅5⋅5⋅5 | [0 2 5⟩ |
28800 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅5 | [7 2 2⟩ |
29160 | 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅5 | [3 6 1⟩ |
30000 | 2⋅2⋅2⋅2⋅3⋅5⋅5⋅5⋅5 | [4 1 4⟩ |
30375 | 3⋅3⋅3⋅3⋅3⋅5⋅5⋅5 | [0 5 3⟩ |
30720 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5 | [11 1 1⟩ |
31250 | 2⋅5⋅5⋅5⋅5⋅5⋅5 | [1 0 6⟩ |
32000 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅5 | [8 0 3⟩ |
32400 | 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅5⋅5 | [4 4 2⟩ |
32805 | 3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅5 | [0 8 1⟩ |
33750 | 2⋅3⋅3⋅3⋅5⋅5⋅5⋅5 | [1 3 4⟩ |
34560 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅5 | [8 3 1⟩ |
36000 | 2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅5⋅5 | [5 2 3⟩ |
36450 | 2⋅3⋅3⋅3⋅3⋅3⋅3⋅5⋅5 | [1 6 2⟩ |
37500 | 2⋅2⋅3⋅5⋅5⋅5⋅5⋅5 | [2 1 5⟩ |
38400 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅5 | [9 1 2⟩ |
38880 | 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅5 | [5 5 1⟩ |
40000 | 2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅5⋅5 | [6 0 4⟩ |
40500 | 2⋅2⋅3⋅3⋅3⋅3⋅5⋅5⋅5 | [2 4 3⟩ |
40960 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5 | [13 0 1⟩ |
43200 | 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅5⋅5 | [6 3 2⟩ |
43740 | 2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅5 | [2 7 1⟩ |
45000 | 2⋅2⋅2⋅3⋅3⋅5⋅5⋅5⋅5 | [3 2 4⟩ |
46080 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5 | [10 2 1⟩ |
46875 | 3⋅5⋅5⋅5⋅5⋅5⋅5 | [0 1 6⟩ |
48000 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅5⋅5 | [7 1 3⟩ |
48600 | 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅5⋅5 | [3 5 2⟩ |
50000 | 2⋅2⋅2⋅2⋅5⋅5⋅5⋅5⋅5 | [4 0 5⟩ |
50625 | 3⋅3⋅3⋅3⋅5⋅5⋅5⋅5 | [0 4 4⟩ |
51200 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5 | [11 0 2⟩ |
51840 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅5 | [7 4 1⟩ |
54000 | 2⋅2⋅2⋅2⋅3⋅3⋅3⋅5⋅5⋅5 | [4 3 3⟩ |
54675 | 3⋅3⋅3⋅3⋅3⋅3⋅3⋅5⋅5 | [0 7 2⟩ |
56250 | 2⋅3⋅3⋅5⋅5⋅5⋅5⋅5 | [1 2 5⟩ |
57600 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅5 | [8 2 2⟩ |
58320 | 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅5 | [4 6 1⟩ |
60000 | 2⋅2⋅2⋅2⋅2⋅3⋅5⋅5⋅5⋅5 | [5 1 4⟩ |
60750 | 2⋅3⋅3⋅3⋅3⋅3⋅5⋅5⋅5 | [1 5 3⟩ |
61440 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5 | [12 1 1⟩ |
62500 | 2⋅2⋅5⋅5⋅5⋅5⋅5⋅5 | [2 0 6⟩ |
64000 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅5 | [9 0 3⟩ |
64800 | 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅5⋅5 | [5 4 2⟩ |
65610 | 2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅5 | [1 8 1⟩ |
67500 | 2⋅2⋅3⋅3⋅3⋅5⋅5⋅5⋅5 | [2 3 4⟩ |
69120 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅5 | [9 3 1⟩ |
72000 | 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅5⋅5 | [6 2 3⟩ |
72900 | 2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅5⋅5 | [2 6 2⟩ |
75000 | 2⋅2⋅2⋅3⋅5⋅5⋅5⋅5⋅5 | [3 1 5⟩ |
76800 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅5 | [10 1 2⟩ |
77760 | 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅5 | [6 5 1⟩ |
78125 | 5⋅5⋅5⋅5⋅5⋅5⋅5 | [0 0 7⟩ |
80000 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅5⋅5 | [7 0 4⟩ |
81000 | 2⋅2⋅2⋅3⋅3⋅3⋅3⋅5⋅5⋅5 | [3 4 3⟩ |
81920 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5 | [14 0 1⟩ |
84375 | 3⋅3⋅3⋅5⋅5⋅5⋅5⋅5 | [0 3 5⟩ |
86400 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅5⋅5 | [7 3 2⟩ |
87480 | 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅5 | [3 7 1⟩ |
90000 | 2⋅2⋅2⋅2⋅3⋅3⋅5⋅5⋅5⋅5 | [4 2 4⟩ |
91125 | 3⋅3⋅3⋅3⋅3⋅3⋅5⋅5⋅5 | [0 6 3⟩ |
92160 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5 | [11 2 1⟩ |
93750 | 2⋅3⋅5⋅5⋅5⋅5⋅5⋅5 | [1 1 6⟩ |
96000 | 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅5⋅5 | [8 1 3⟩ |
97200 | 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅5⋅5 | [4 5 2⟩ |
98415 | 3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅5 | [0 9 1⟩ |