List of 5-limit factorizations

From Xenharmonic Wiki
Jump to: navigation, search

This list includes prime factorizations and monzos of all numbers from 1 to 99999 which are divisible by 5, and not divisible by any larger prime number.

integer factorization monzo
5 5 | 0 0 1 >
10 2⋅5 | 1 0 1 >
15 3⋅5 | 0 1 1 >
20 2⋅2⋅5 | 2 0 1 >
25 5⋅5 | 0 0 2 >
30 2⋅3⋅5 | 1 1 1 >
40 2⋅2⋅2⋅5 | 3 0 1 >
45 3⋅3⋅5 | 0 2 1 >
50 2⋅5⋅5 | 1 0 2 >
60 2⋅2⋅3⋅5 | 2 1 1 >
75 3⋅5⋅5 | 0 1 2 >
80 2⋅2⋅2⋅2⋅5 | 4 0 1 >
90 2⋅3⋅3⋅5 | 1 2 1 >
100 2⋅2⋅5⋅5 | 2 0 2 >
120 2⋅2⋅2⋅3⋅5 | 3 1 1 >
125 5⋅5⋅5 | 0 0 3 >
135 3⋅3⋅3⋅5 | 0 3 1 >
150 2⋅3⋅5⋅5 | 1 1 2 >
160 2⋅2⋅2⋅2⋅2⋅5 | 5 0 1 >
180 2⋅2⋅3⋅3⋅5 | 2 2 1 >
200 2⋅2⋅2⋅5⋅5 | 3 0 2 >
225 3⋅3⋅5⋅5 | 0 2 2 >
240 2⋅2⋅2⋅2⋅3⋅5 | 4 1 1 >
250 2⋅5⋅5⋅5 | 1 0 3 >
270 2⋅3⋅3⋅3⋅5 | 1 3 1 >
300 2⋅2⋅3⋅5⋅5 | 2 1 2 >
320 2⋅2⋅2⋅2⋅2⋅2⋅5 | 6 0 1 >
360 2⋅2⋅2⋅3⋅3⋅5 | 3 2 1 >
375 3⋅5⋅5⋅5 | 0 1 3 >
400 2⋅2⋅2⋅2⋅5⋅5 | 4 0 2 >
405 3⋅3⋅3⋅3⋅5 | 0 4 1 >
450 2⋅3⋅3⋅5⋅5 | 1 2 2 >
480 2⋅2⋅2⋅2⋅2⋅3⋅5 | 5 1 1 >
500 2⋅2⋅5⋅5⋅5 | 2 0 3 >
540 2⋅2⋅3⋅3⋅3⋅5 | 2 3 1 >
600 2⋅2⋅2⋅3⋅5⋅5 | 3 1 2 >
625 5⋅5⋅5⋅5 | 0 0 4 >
640 2⋅2⋅2⋅2⋅2⋅2⋅2⋅5 | 7 0 1 >
675 3⋅3⋅3⋅5⋅5 | 0 3 2 >
720 2⋅2⋅2⋅2⋅3⋅3⋅5 | 4 2 1 >
750 2⋅3⋅5⋅5⋅5 | 1 1 3 >
800 2⋅2⋅2⋅2⋅2⋅5⋅5 | 5 0 2 >
810 2⋅3⋅3⋅3⋅3⋅5 | 1 4 1 >
900 2⋅2⋅3⋅3⋅5⋅5 | 2 2 2 >
960 2⋅2⋅2⋅2⋅2⋅2⋅3⋅5 | 6 1 1 >
1000 2⋅2⋅2⋅5⋅5⋅5 | 3 0 3 >
1080 2⋅2⋅2⋅3⋅3⋅3⋅5 | 3 3 1 >
1125 3⋅3⋅5⋅5⋅5 | 0 2 3 >
1200 2⋅2⋅2⋅2⋅3⋅5⋅5 | 4 1 2 >
1215 3⋅3⋅3⋅3⋅3⋅5 | 0 5 1 >
1250 2⋅5⋅5⋅5⋅5 | 1 0 4 >
1280 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5 | 8 0 1 >
1350 2⋅3⋅3⋅3⋅5⋅5 | 1 3 2 >
1440 2⋅2⋅2⋅2⋅2⋅3⋅3⋅5 | 5 2 1 >
1500 2⋅2⋅3⋅5⋅5⋅5 | 2 1 3 >
1600 2⋅2⋅2⋅2⋅2⋅2⋅5⋅5 | 6 0 2 >
1620 2⋅2⋅3⋅3⋅3⋅3⋅5 | 2 4 1 >
1800 2⋅2⋅2⋅3⋅3⋅5⋅5 | 3 2 2 >
1875 3⋅5⋅5⋅5⋅5 | 0 1 4 >
1920 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5 | 7 1 1 >
2000 2⋅2⋅2⋅2⋅5⋅5⋅5 | 4 0 3 >
2025 3⋅3⋅3⋅3⋅5⋅5 | 0 4 2 >
2160 2⋅2⋅2⋅2⋅3⋅3⋅3⋅5 | 4 3 1 >
2250 2⋅3⋅3⋅5⋅5⋅5 | 1 2 3 >
2400 2⋅2⋅2⋅2⋅2⋅3⋅5⋅5 | 5 1 2 >
2430 2⋅3⋅3⋅3⋅3⋅3⋅5 | 1 5 1 >
2500 2⋅2⋅5⋅5⋅5⋅5 | 2 0 4 >
2560 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5 | 9 0 1 >
2700 2⋅2⋅3⋅3⋅3⋅5⋅5 | 2 3 2 >
2880 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5 | 6 2 1 >
3000 2⋅2⋅2⋅3⋅5⋅5⋅5 | 3 1 3 >
3125 5⋅5⋅5⋅5⋅5 | 0 0 5 >
3200 2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5 | 7 0 2 >
3240 2⋅2⋅2⋅3⋅3⋅3⋅3⋅5 | 3 4 1 >
3375 3⋅3⋅3⋅5⋅5⋅5 | 0 3 3 >
3600 2⋅2⋅2⋅2⋅3⋅3⋅5⋅5 | 4 2 2 >
3645 3⋅3⋅3⋅3⋅3⋅3⋅5 | 0 6 1 >
3750 2⋅3⋅5⋅5⋅5⋅5 | 1 1 4 >
3840 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5 | 8 1 1 >
4000 2⋅2⋅2⋅2⋅2⋅5⋅5⋅5 | 5 0 3 >
4050 2⋅3⋅3⋅3⋅3⋅5⋅5 | 1 4 2 >
4320 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅5 | 5 3 1 >
4500 2⋅2⋅3⋅3⋅5⋅5⋅5 | 2 2 3 >
4800 2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅5 | 6 1 2 >
4860 2⋅2⋅3⋅3⋅3⋅3⋅3⋅5 | 2 5 1 >
5000 2⋅2⋅2⋅5⋅5⋅5⋅5 | 3 0 4 >
5120 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5 | 10 0 1 >
5400 2⋅2⋅2⋅3⋅3⋅3⋅5⋅5 | 3 3 2 >
5625 3⋅3⋅5⋅5⋅5⋅5 | 0 2 4 >
5760 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5 | 7 2 1 >
6000 2⋅2⋅2⋅2⋅3⋅5⋅5⋅5 | 4 1 3 >
6075 3⋅3⋅3⋅3⋅3⋅5⋅5 | 0 5 2 >
6250 2⋅5⋅5⋅5⋅5⋅5 | 1 0 5 >
6400 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5 | 8 0 2 >
6480 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅5 | 4 4 1 >
6750 2⋅3⋅3⋅3⋅5⋅5⋅5 | 1 3 3 >
7200 2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅5 | 5 2 2 >
7290 2⋅3⋅3⋅3⋅3⋅3⋅3⋅5 | 1 6 1 >
7500 2⋅2⋅3⋅5⋅5⋅5⋅5 | 2 1 4 >
7680 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5 | 9 1 1 >
8000 2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅5 | 6 0 3 >
8100 2⋅2⋅3⋅3⋅3⋅3⋅5⋅5 | 2 4 2 >
8640 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅5 | 6 3 1 >
9000 2⋅2⋅2⋅3⋅3⋅5⋅5⋅5 | 3 2 3 >
9375 3⋅5⋅5⋅5⋅5⋅5 | 0 1 5 >
9600 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅5 | 7 1 2 >
9720 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅5 | 3 5 1 >
10000 2⋅2⋅2⋅2⋅5⋅5⋅5⋅5 | 4 0 4 >
10125 3⋅3⋅3⋅3⋅5⋅5⋅5 | 0 4 3 >
10240 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5 | 11 0 1 >
10800 2⋅2⋅2⋅2⋅3⋅3⋅3⋅5⋅5 | 4 3 2 >
10935 3⋅3⋅3⋅3⋅3⋅3⋅3⋅5 | 0 7 1 >
11250 2⋅3⋅3⋅5⋅5⋅5⋅5 | 1 2 4 >
11520 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5 | 8 2 1 >
12000 2⋅2⋅2⋅2⋅2⋅3⋅5⋅5⋅5 | 5 1 3 >
12150 2⋅3⋅3⋅3⋅3⋅3⋅5⋅5 | 1 5 2 >
12500 2⋅2⋅5⋅5⋅5⋅5⋅5 | 2 0 5 >
12800 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5 | 9 0 2 >
12960 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅5 | 5 4 1 >
13500 2⋅2⋅3⋅3⋅3⋅5⋅5⋅5 | 2 3 3 >
14400 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅5 | 6 2 2 >
14580 2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅5 | 2 6 1 >
15000 2⋅2⋅2⋅3⋅5⋅5⋅5⋅5 | 3 1 4 >
15360 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5 | 10 1 1 >
15625 5⋅5⋅5⋅5⋅5⋅5 | 0 0 6 >
16000 2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅5 | 7 0 3 >
16200 2⋅2⋅2⋅3⋅3⋅3⋅3⋅5⋅5 | 3 4 2 >
16875 3⋅3⋅3⋅5⋅5⋅5⋅5 | 0 3 4 >
17280 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅5 | 7 3 1 >
18000 2⋅2⋅2⋅2⋅3⋅3⋅5⋅5⋅5 | 4 2 3 >
18225 3⋅3⋅3⋅3⋅3⋅3⋅5⋅5 | 0 6 2 >
18750 2⋅3⋅5⋅5⋅5⋅5⋅5 | 1 1 5 >
19200 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅5 | 8 1 2 >
19440 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅5 | 4 5 1 >
20000 2⋅2⋅2⋅2⋅2⋅5⋅5⋅5⋅5 | 5 0 4 >
20250 2⋅3⋅3⋅3⋅3⋅5⋅5⋅5 | 1 4 3 >
20480 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5 | 12 0 1 >
21600 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅5⋅5 | 5 3 2 >
21870 2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅5 | 1 7 1 >
22500 2⋅2⋅3⋅3⋅5⋅5⋅5⋅5 | 2 2 4 >
23040 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5 | 9 2 1 >
24000 2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅5⋅5 | 6 1 3 >
24300 2⋅2⋅3⋅3⋅3⋅3⋅3⋅5⋅5 | 2 5 2 >
25000 2⋅2⋅2⋅5⋅5⋅5⋅5⋅5 | 3 0 5 >
25600 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5 | 10 0 2 >
25920 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅5 | 6 4 1 >
27000 2⋅2⋅2⋅3⋅3⋅3⋅5⋅5⋅5 | 3 3 3 >
28125 3⋅3⋅5⋅5⋅5⋅5⋅5 | 0 2 5 >
28800 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅5 | 7 2 2 >
29160 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅5 | 3 6 1 >
30000 2⋅2⋅2⋅2⋅3⋅5⋅5⋅5⋅5 | 4 1 4 >
30375 3⋅3⋅3⋅3⋅3⋅5⋅5⋅5 | 0 5 3 >
30720 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5 | 11 1 1 >
31250 2⋅5⋅5⋅5⋅5⋅5⋅5 | 1 0 6 >
32000 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅5 | 8 0 3 >
32400 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅5⋅5 | 4 4 2 >
32805 3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅5 | 0 8 1 >
33750 2⋅3⋅3⋅3⋅5⋅5⋅5⋅5 | 1 3 4 >
34560 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅5 | 8 3 1 >
36000 2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅5⋅5 | 5 2 3 >
36450 2⋅3⋅3⋅3⋅3⋅3⋅3⋅5⋅5 | 1 6 2 >
37500 2⋅2⋅3⋅5⋅5⋅5⋅5⋅5 | 2 1 5 >
38400 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅5 | 9 1 2 >
38880 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅5 | 5 5 1 >
40000 2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅5⋅5 | 6 0 4 >
40500 2⋅2⋅3⋅3⋅3⋅3⋅5⋅5⋅5 | 2 4 3 >
40960 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5 | 13 0 1 >
43200 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅5⋅5 | 6 3 2 >
43740 2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅5 | 2 7 1 >
45000 2⋅2⋅2⋅3⋅3⋅5⋅5⋅5⋅5 | 3 2 4 >
46080 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5 | 10 2 1 >
46875 3⋅5⋅5⋅5⋅5⋅5⋅5 | 0 1 6 >
48000 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅5⋅5 | 7 1 3 >
48600 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅5⋅5 | 3 5 2 >
50000 2⋅2⋅2⋅2⋅5⋅5⋅5⋅5⋅5 | 4 0 5 >
50625 3⋅3⋅3⋅3⋅5⋅5⋅5⋅5 | 0 4 4 >
51200 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5 | 11 0 2 >
51840 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅5 | 7 4 1 >
54000 2⋅2⋅2⋅2⋅3⋅3⋅3⋅5⋅5⋅5 | 4 3 3 >
54675 3⋅3⋅3⋅3⋅3⋅3⋅3⋅5⋅5 | 0 7 2 >
56250 2⋅3⋅3⋅5⋅5⋅5⋅5⋅5 | 1 2 5 >
57600 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅5 | 8 2 2 >
58320 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅5 | 4 6 1 >
60000 2⋅2⋅2⋅2⋅2⋅3⋅5⋅5⋅5⋅5 | 5 1 4 >
60750 2⋅3⋅3⋅3⋅3⋅3⋅5⋅5⋅5 | 1 5 3 >
61440 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5 | 12 1 1 >
62500 2⋅2⋅5⋅5⋅5⋅5⋅5⋅5 | 2 0 6 >
64000 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅5 | 9 0 3 >
64800 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅5⋅5 | 5 4 2 >
65610 2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅5 | 1 8 1 >
67500 2⋅2⋅3⋅3⋅3⋅5⋅5⋅5⋅5 | 2 3 4 >
69120 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅5 | 9 3 1 >
72000 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅5⋅5 | 6 2 3 >
72900 2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅5⋅5 | 2 6 2 >
75000 2⋅2⋅2⋅3⋅5⋅5⋅5⋅5⋅5 | 3 1 5 >
76800 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅5 | 10 1 2 >
77760 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅5 | 6 5 1 >
78125 5⋅5⋅5⋅5⋅5⋅5⋅5 | 0 0 7 >
80000 2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅5⋅5 | 7 0 4 >
81000 2⋅2⋅2⋅3⋅3⋅3⋅3⋅5⋅5⋅5 | 3 4 3 >
81920 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5 | 14 0 1 >
84375 3⋅3⋅3⋅5⋅5⋅5⋅5⋅5 | 0 3 5 >
86400 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅5⋅5 | 7 3 2 >
87480 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅5 | 3 7 1 >
90000 2⋅2⋅2⋅2⋅3⋅3⋅5⋅5⋅5⋅5 | 4 2 4 >
91125 3⋅3⋅3⋅3⋅3⋅3⋅5⋅5⋅5 | 0 6 3 >
92160 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5 | 11 2 1 >
93750 2⋅3⋅5⋅5⋅5⋅5⋅5⋅5 | 1 1 6 >
96000 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅5⋅5 | 8 1 3 >
97200 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅5⋅5 | 4 5 2 >
98415 3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅5 | 0 9 1 >