List of 5-limit factorizations

From Xenharmonic Wiki
Jump to navigation Jump to search

This list includes prime factorizations and monzos of all numbers from 1 to 99999 which are divisible by 5, and not divisible by any larger prime number.

integer factorization monzo
5 5 [0 0 1
10 2⋅5 [1 0 1
15 3⋅5 [0 1 1
20 2⋅2⋅5 [2 0 1
25 5⋅5 [0 0 2
30 2⋅3⋅5 [1 1 1
40 2⋅2⋅2⋅5 [3 0 1
45 3⋅3⋅5 [0 2 1
50 2⋅5⋅5 [1 0 2
60 2⋅2⋅3⋅5 [2 1 1
75 3⋅5⋅5 [0 1 2
80 2⋅2⋅2⋅2⋅5 [4 0 1
90 2⋅3⋅3⋅5 [1 2 1
100 2⋅2⋅5⋅5 [2 0 2
120 2⋅2⋅2⋅3⋅5 [3 1 1
125 5⋅5⋅5 [0 0 3
135 3⋅3⋅3⋅5 [0 3 1
150 2⋅3⋅5⋅5 [1 1 2
160 2⋅2⋅2⋅2⋅2⋅5 [5 0 1
180 2⋅2⋅3⋅3⋅5 [2 2 1
200 2⋅2⋅2⋅5⋅5 [3 0 2
225 3⋅3⋅5⋅5 [0 2 2
240 2⋅2⋅2⋅2⋅3⋅5 [4 1 1
250 2⋅5⋅5⋅5 [1 0 3
270 2⋅3⋅3⋅3⋅5 [1 3 1
300 2⋅2⋅3⋅5⋅5 [2 1 2
320 2⋅2⋅2⋅2⋅2⋅2⋅5 [6 0 1
360 2⋅2⋅2⋅3⋅3⋅5 [3 2 1
375 3⋅5⋅5⋅5 [0 1 3
400 2⋅2⋅2⋅2⋅5⋅5 [4 0 2
405 3⋅3⋅3⋅3⋅5 [0 4 1
450 2⋅3⋅3⋅5⋅5 [1 2 2
480 2⋅2⋅2⋅2⋅2⋅3⋅5 [5 1 1
500 2⋅2⋅5⋅5⋅5 [2 0 3
540 2⋅2⋅3⋅3⋅3⋅5 [2 3 1
600 2⋅2⋅2⋅3⋅5⋅5 [3 1 2
625 5⋅5⋅5⋅5 [0 0 4
640 2⋅2⋅2⋅2⋅2⋅2⋅2⋅5 [7 0 1
675 3⋅3⋅3⋅5⋅5 [0 3 2
720 2⋅2⋅2⋅2⋅3⋅3⋅5 [4 2 1
750 2⋅3⋅5⋅5⋅5 [1 1 3
800 2⋅2⋅2⋅2⋅2⋅5⋅5 [5 0 2
810 2⋅3⋅3⋅3⋅3⋅5 [1 4 1
900 2⋅2⋅3⋅3⋅5⋅5 [2 2 2
960 2⋅2⋅2⋅2⋅2⋅2⋅3⋅5 [6 1 1
1000 2⋅2⋅2⋅5⋅5⋅5 [3 0 3
1080 2⋅2⋅2⋅3⋅3⋅3⋅5 [3 3 1
1125 3⋅3⋅5⋅5⋅5 [0 2 3
1200 2⋅2⋅2⋅2⋅3⋅5⋅5 [4 1 2
1215 3⋅3⋅3⋅3⋅3⋅5 [0 5 1
1250 2⋅5⋅5⋅5⋅5 [1 0 4
1280 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5 [8 0 1
1350 2⋅3⋅3⋅3⋅5⋅5 [1 3 2
1440 2⋅2⋅2⋅2⋅2⋅3⋅3⋅5 [5 2 1
1500 2⋅2⋅3⋅5⋅5⋅5 [2 1 3
1600 2⋅2⋅2⋅2⋅2⋅2⋅5⋅5 [6 0 2
1620 2⋅2⋅3⋅3⋅3⋅3⋅5 [2 4 1
1800 2⋅2⋅2⋅3⋅3⋅5⋅5 [3 2 2
1875 3⋅5⋅5⋅5⋅5 [0 1 4
1920 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5 [7 1 1
2000 2⋅2⋅2⋅2⋅5⋅5⋅5 [4 0 3
2025 3⋅3⋅3⋅3⋅5⋅5 [0 4 2
2160 2⋅2⋅2⋅2⋅3⋅3⋅3⋅5 [4 3 1
2250 2⋅3⋅3⋅5⋅5⋅5 [1 2 3
2400 2⋅2⋅2⋅2⋅2⋅3⋅5⋅5 [5 1 2
2430 2⋅3⋅3⋅3⋅3⋅3⋅5 [1 5 1
2500 2⋅2⋅5⋅5⋅5⋅5 [2 0 4
2560 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5 [9 0 1
2700 2⋅2⋅3⋅3⋅3⋅5⋅5 [2 3 2
2880 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5 [6 2 1
3000 2⋅2⋅2⋅3⋅5⋅5⋅5 [3 1 3
3125 5⋅5⋅5⋅5⋅5 [0 0 5
3200 2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5 [7 0 2
3240 2⋅2⋅2⋅3⋅3⋅3⋅3⋅5 [3 4 1
3375 3⋅3⋅3⋅5⋅5⋅5 [0 3 3
3600 2⋅2⋅2⋅2⋅3⋅3⋅5⋅5 [4 2 2
3645 3⋅3⋅3⋅3⋅3⋅3⋅5 [0 6 1
3750 2⋅3⋅5⋅5⋅5⋅5 [1 1 4
3840 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5 [8 1 1
4000 2⋅2⋅2⋅2⋅2⋅5⋅5⋅5 [5 0 3
4050 2⋅3⋅3⋅3⋅3⋅5⋅5 [1 4 2
4320 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅5 [5 3 1
4500 2⋅2⋅3⋅3⋅5⋅5⋅5 [2 2 3
4800 2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅5 [6 1 2
4860 2⋅2⋅3⋅3⋅3⋅3⋅3⋅5 [2 5 1
5000 2⋅2⋅2⋅5⋅5⋅5⋅5 [3 0 4
5120 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5 [10 0 1
5400 2⋅2⋅2⋅3⋅3⋅3⋅5⋅5 [3 3 2
5625 3⋅3⋅5⋅5⋅5⋅5 [0 2 4
5760 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5 [7 2 1
6000 2⋅2⋅2⋅2⋅3⋅5⋅5⋅5 [4 1 3
6075 3⋅3⋅3⋅3⋅3⋅5⋅5 [0 5 2
6250 2⋅5⋅5⋅5⋅5⋅5 [1 0 5
6400 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5 [8 0 2
6480 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅5 [4 4 1
6750 2⋅3⋅3⋅3⋅5⋅5⋅5 [1 3 3
7200 2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅5 [5 2 2
7290 2⋅3⋅3⋅3⋅3⋅3⋅3⋅5 [1 6 1
7500 2⋅2⋅3⋅5⋅5⋅5⋅5 [2 1 4
7680 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5 [9 1 1
8000 2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅5 [6 0 3
8100 2⋅2⋅3⋅3⋅3⋅3⋅5⋅5 [2 4 2
8640 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅5 [6 3 1
9000 2⋅2⋅2⋅3⋅3⋅5⋅5⋅5 [3 2 3
9375 3⋅5⋅5⋅5⋅5⋅5 [0 1 5
9600 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅5 [7 1 2
9720 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅5 [3 5 1
10000 2⋅2⋅2⋅2⋅5⋅5⋅5⋅5 [4 0 4
10125 3⋅3⋅3⋅3⋅5⋅5⋅5 [0 4 3
10240 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5 [11 0 1
10800 2⋅2⋅2⋅2⋅3⋅3⋅3⋅5⋅5 [4 3 2
10935 3⋅3⋅3⋅3⋅3⋅3⋅3⋅5 [0 7 1
11250 2⋅3⋅3⋅5⋅5⋅5⋅5 [1 2 4
11520 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5 [8 2 1
12000 2⋅2⋅2⋅2⋅2⋅3⋅5⋅5⋅5 [5 1 3
12150 2⋅3⋅3⋅3⋅3⋅3⋅5⋅5 [1 5 2
12500 2⋅2⋅5⋅5⋅5⋅5⋅5 [2 0 5
12800 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5 [9 0 2
12960 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅5 [5 4 1
13500 2⋅2⋅3⋅3⋅3⋅5⋅5⋅5 [2 3 3
14400 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅5 [6 2 2
14580 2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅5 [2 6 1
15000 2⋅2⋅2⋅3⋅5⋅5⋅5⋅5 [3 1 4
15360 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5 [10 1 1
15625 5⋅5⋅5⋅5⋅5⋅5 [0 0 6
16000 2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅5 [7 0 3
16200 2⋅2⋅2⋅3⋅3⋅3⋅3⋅5⋅5 [3 4 2
16875 3⋅3⋅3⋅5⋅5⋅5⋅5 [0 3 4
17280 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅5 [7 3 1
18000 2⋅2⋅2⋅2⋅3⋅3⋅5⋅5⋅5 [4 2 3
18225 3⋅3⋅3⋅3⋅3⋅3⋅5⋅5 [0 6 2
18750 2⋅3⋅5⋅5⋅5⋅5⋅5 [1 1 5
19200 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅5 [8 1 2
19440 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅5 [4 5 1
20000 2⋅2⋅2⋅2⋅2⋅5⋅5⋅5⋅5 [5 0 4
20250 2⋅3⋅3⋅3⋅3⋅5⋅5⋅5 [1 4 3
20480 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5 [12 0 1
21600 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅5⋅5 [5 3 2
21870 2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅5 [1 7 1
22500 2⋅2⋅3⋅3⋅5⋅5⋅5⋅5 [2 2 4
23040 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5 [9 2 1
24000 2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅5⋅5 [6 1 3
24300 2⋅2⋅3⋅3⋅3⋅3⋅3⋅5⋅5 [2 5 2
25000 2⋅2⋅2⋅5⋅5⋅5⋅5⋅5 [3 0 5
25600 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5 [10 0 2
25920 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅5 [6 4 1
27000 2⋅2⋅2⋅3⋅3⋅3⋅5⋅5⋅5 [3 3 3
28125 3⋅3⋅5⋅5⋅5⋅5⋅5 [0 2 5
28800 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅5 [7 2 2
29160 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅5 [3 6 1
30000 2⋅2⋅2⋅2⋅3⋅5⋅5⋅5⋅5 [4 1 4
30375 3⋅3⋅3⋅3⋅3⋅5⋅5⋅5 [0 5 3
30720 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5 [11 1 1
31250 2⋅5⋅5⋅5⋅5⋅5⋅5 [1 0 6
32000 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅5 [8 0 3
32400 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅5⋅5 [4 4 2
32805 3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅5 [0 8 1
33750 2⋅3⋅3⋅3⋅5⋅5⋅5⋅5 [1 3 4
34560 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅5 [8 3 1
36000 2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅5⋅5 [5 2 3
36450 2⋅3⋅3⋅3⋅3⋅3⋅3⋅5⋅5 [1 6 2
37500 2⋅2⋅3⋅5⋅5⋅5⋅5⋅5 [2 1 5
38400 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅5 [9 1 2
38880 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅5 [5 5 1
40000 2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅5⋅5 [6 0 4
40500 2⋅2⋅3⋅3⋅3⋅3⋅5⋅5⋅5 [2 4 3
40960 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5 [13 0 1
43200 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅5⋅5 [6 3 2
43740 2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅5 [2 7 1
45000 2⋅2⋅2⋅3⋅3⋅5⋅5⋅5⋅5 [3 2 4
46080 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5 [10 2 1
46875 3⋅5⋅5⋅5⋅5⋅5⋅5 [0 1 6
48000 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅5⋅5 [7 1 3
48600 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅5⋅5 [3 5 2
50000 2⋅2⋅2⋅2⋅5⋅5⋅5⋅5⋅5 [4 0 5
50625 3⋅3⋅3⋅3⋅5⋅5⋅5⋅5 [0 4 4
51200 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5 [11 0 2
51840 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅5 [7 4 1
54000 2⋅2⋅2⋅2⋅3⋅3⋅3⋅5⋅5⋅5 [4 3 3
54675 3⋅3⋅3⋅3⋅3⋅3⋅3⋅5⋅5 [0 7 2
56250 2⋅3⋅3⋅5⋅5⋅5⋅5⋅5 [1 2 5
57600 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅5 [8 2 2
58320 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅5 [4 6 1
60000 2⋅2⋅2⋅2⋅2⋅3⋅5⋅5⋅5⋅5 [5 1 4
60750 2⋅3⋅3⋅3⋅3⋅3⋅5⋅5⋅5 [1 5 3
61440 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5 [12 1 1
62500 2⋅2⋅5⋅5⋅5⋅5⋅5⋅5 [2 0 6
64000 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅5 [9 0 3
64800 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅5⋅5 [5 4 2
65610 2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅5 [1 8 1
67500 2⋅2⋅3⋅3⋅3⋅5⋅5⋅5⋅5 [2 3 4
69120 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅5 [9 3 1
72000 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5⋅5⋅5 [6 2 3
72900 2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅5⋅5 [2 6 2
75000 2⋅2⋅2⋅3⋅5⋅5⋅5⋅5⋅5 [3 1 5
76800 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅5 [10 1 2
77760 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅5 [6 5 1
78125 5⋅5⋅5⋅5⋅5⋅5⋅5 [0 0 7
80000 2⋅2⋅2⋅2⋅2⋅2⋅2⋅5⋅5⋅5⋅5 [7 0 4
81000 2⋅2⋅2⋅3⋅3⋅3⋅3⋅5⋅5⋅5 [3 4 3
81920 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅5 [14 0 1
84375 3⋅3⋅3⋅5⋅5⋅5⋅5⋅5 [0 3 5
86400 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅5⋅5 [7 3 2
87480 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅5 [3 7 1
90000 2⋅2⋅2⋅2⋅3⋅3⋅5⋅5⋅5⋅5 [4 2 4
91125 3⋅3⋅3⋅3⋅3⋅3⋅5⋅5⋅5 [0 6 3
92160 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅5 [11 2 1
93750 2⋅3⋅5⋅5⋅5⋅5⋅5⋅5 [1 1 6
96000 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅5⋅5⋅5 [8 1 3
97200 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅5⋅5 [4 5 2
98415 3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅5 [0 9 1


Icon-Todo.png Todo: clarify, improve synopsis
Explain the musical uses for this table in the introduction.
Icon-Todo.png Todo: link
Link to this table from relevant pages, and add a see also at the end to give readers somewhere to go next.