List of 3-limit factorizations

From Xenharmonic Wiki
Jump to navigation Jump to search

This list includes prime factorizations and monzos of all numbers from 1 to 9999999 (107-1) which are divisible by 3, and not divisible by any larger prime number.

integer factorization monzo
3 3 [0 1
6 2⋅3 [1 1
9 3⋅3 [0 2
12 2⋅2⋅3 [2 1
18 2⋅3⋅3 [1 2
24 2⋅2⋅2⋅3 [3 1
27 3⋅3⋅3 [0 3
36 2⋅2⋅3⋅3 [2 2
48 2⋅2⋅2⋅2⋅3 [4 1
54 2⋅3⋅3⋅3 [1 3
72 2⋅2⋅2⋅3⋅3 [3 2
81 3⋅3⋅3⋅3 [0 4
96 2⋅2⋅2⋅2⋅2⋅3 [5 1
108 2⋅2⋅3⋅3⋅3 [2 3
144 2⋅2⋅2⋅2⋅3⋅3 [4 2
162 2⋅3⋅3⋅3⋅3 [1 4
192 2⋅2⋅2⋅2⋅2⋅2⋅3 [6 1
216 2⋅2⋅2⋅3⋅3⋅3 [3 3
243 3⋅3⋅3⋅3⋅3 [0 5
288 2⋅2⋅2⋅2⋅2⋅3⋅3 [5 2
324 2⋅2⋅3⋅3⋅3⋅3 [2 4
384 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3 [7 1
432 2⋅2⋅2⋅2⋅3⋅3⋅3 [4 3
486 2⋅3⋅3⋅3⋅3⋅3 [1 5
576 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3 [6 2
648 2⋅2⋅2⋅3⋅3⋅3⋅3 [3 4
729 3⋅3⋅3⋅3⋅3⋅3 [0 6
768 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3 [8 1
864 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3 [5 3
972 2⋅2⋅3⋅3⋅3⋅3⋅3 [2 5
1152 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3 [7 2
1296 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3 [4 4
1458 2⋅3⋅3⋅3⋅3⋅3⋅3 [1 6
1536 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3 [9 1
1728 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3 [6 3
1944 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3 [3 5
2187 3⋅3⋅3⋅3⋅3⋅3⋅3 [0 7
2304 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3 [8 2
2592 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3 [5 4
2916 2⋅2⋅3⋅3⋅3⋅3⋅3⋅3 [2 6
3072 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3 [10 1
3456 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3 [7 3
3888 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3 [4 5
4374 2⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [1 7
4608 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3 [9 2
5184 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3 [6 4
5832 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3 [3 6
6144 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3 [11 1
6561 3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [0 8
6912 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3 [8 3
7776 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3 [5 5
8748 2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [2 7
9216 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3 [10 2
10368 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3 [7 4
11664 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3 [4 6
12288 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3 [12 1
13122 2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [1 8
13824 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3 [9 3
15552 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3 [6 5
17496 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [3 7
18432 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3 [11 2
19683 3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [0 9
20736 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3 [8 4
23328 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3 [5 6
24576 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3 [13 1
26244 2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [2 8
27648 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3 [10 3
31104 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3 [7 5
34992 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [4 7
36864 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3 [12 2
39366 2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [1 9
41472 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3 [9 4
46656 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3 [6 6
49152 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3 [14 1
52488 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [3 8
55296 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3 [11 3
59049 3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [0 10
62208 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3 [8 5
69984 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [5 7
73728 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3 [13 2
78732 2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [2 9
82944 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3 [10 4
93312 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3 [7 6
98304 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3 [15 1
104976 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [4 8
110592 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3 [12 3
118098 2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [1 10
124416 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3 [9 5
139968 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [6 7
147456 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3 [14 2
157464 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [3 9
165888 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3 [11 4
177147 3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [0 11
186624 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3 [8 6
196608 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3 [16 1
209952 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [5 8
221184 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3 [13 3
236196 2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [2 10
248832 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3 [10 5
279936 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [7 7
294912 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3 [15 2
314928 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [4 9
331776 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3 [12 4
354294 2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [1 11
373248 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3 [9 6
393216 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3 [17 1
419904 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [6 8
442368 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3 [14 3
472392 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [3 10
497664 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3 [11 5
531441 3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [0 12
559872 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [8 7
589824 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3 [16 2
629856 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [5 9
663552 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3 [13 4
708588 2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [2 11
746496 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3 [10 6
786432 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3 [18 1
839808 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [7 8
884736 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3 [15 3
944784 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [4 10
995328 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3 [12 5
1062882 2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [1 12
1119744 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [9 7
1179648 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3 [17 2
1259712 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [6 9
1327104 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3 [14 4
1417176 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [3 11
1492992 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3 [11 6
1572864 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3 [19 1
1594323 3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [0 13
1679616 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [8 8
1769472 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3 [16 3
1889568 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [5 10
1990656 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3 [13 5
2125764 2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [2 12
2239488 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [10 7
2359296 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3 [18 2
2519424 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [7 9
2654208 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3 [15 4
2834352 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [4 11
2985984 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3 [12 6
3145728 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3 [20 1
3188646 2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [1 13
3359232 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [9 8
3538944 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3 [17 3
3779136 2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [6 10
3981312 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3 [14 5
4251528 2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [3 12
4478976 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [11 7
4718592 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3 [19 2
4782969 3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [0 14
5038848 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [8 9
5308416 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3 [16 4
5668704 2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [5 11
5971968 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3 [13 6
6291456 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3 [21 1
6377292 2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [2 13
6718464 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [10 8
7077888 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3 [18 3
7558272 2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [7 10
7962624 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3 [15 5
8503056 2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [4 12
8957952 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [12 7
9437184 2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅2⋅3⋅3 [20 2
9565938 2⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3⋅3 [1 14


Icon-Todo.png Todo: clarify, improve synopsis
Explain the musical uses for this table in the introduction.
Icon-Todo.png Todo: link
Link to this table from relevant pages, and add a see also at the end to give readers somewhere to go next.