Edo anatomy

From Xenharmonic Wiki
Jump to navigation Jump to search

Anatomy of an Equal Division per 2/1 (ED2, EDO)

This chart gives a list of fractions between 0 and 1, with numerators between 1 and 60, in order of descending difference from 1/2, and their corresponding cent values if taken as (logarithmic) fractions of an octave

as exponent

[math]2^f[/math]

in cents part of 1200¢ as exponent

[math]2^f[/math]

0\1 0 1200 1\1
1\32 37.5 1162.5 31\32
1\31 38.7096 1161.2904 30\31
2\61 39.3443 1160.6557 60\61
1\30 40 1160 29\30
2\59 40.678 1159.322 57\59
1\29 41.3793 1158.6207 28\29
2\57 42.1053 1157.8947 55\57
1\28 42.8571 1157.1429 27\28
2\55 43.63 1156.36 53\55
1\27 44.4 1155.5 26\27
2\53 45.283 1054.717 51\53
1\26 46.15385 1153.84615 25\26
2\51 47.0588 1152.9412 49\51
1\25 48 1152 24\25
2\49 48.9796 1151.0204 47\49
1\24 50 1150 23\24
2\47 51.0638 1148.9562 45\47
1\23 52.1739 1047.8261 22\23
2\45 53.3 1146.6 43\45
1\22 54.54 1145.45 21\22
2\43 55.81395 1144.18605 41\43
1\21 57.1429 1143.8571 20\21
2\41 58.5366 1141.4634 39\41
1\20 60 1140 19\20
2\39 61.5385 1139.4615 37\39
1\19 63.1579 1136.8421 18\19
2\37 64.864 1135.135 35\37
1\18 66.6 1133.3 17\18
2\35 68.5714 1131.4286 33\35
1\17 70.5882 1129.4118 16\17
2\33 72.72 1127.27 31\33
1\16 75 1125 15\16
3\47 76.5957 1123.4043 44\47
2\31 77.41935 1122.58065 29\31
3\46 78.2609 1121.7391 43\46
1\15 80 1120 14\15
3\44 81.81 1118.18 41\44
2\29 82.759 1117.241 27\29
3\43 83.7209 1116.2791 40\43
1\14 85.7143 1114.2857 13\14
3\41 87.8049 1112.1951 38\41
2\27 88.8 1111.1 25\27
3\40 90 1110 37\40
1\13 92.3077 1107.6923 12\13
3\38 94.7638 1105.2362 35\38
2\25 96 1104 23\25
3\37 97.297 1102.702 34\37
1\12 100 1100 11\12
3\35 102.8571 1097.1429 32\35
2\23 104.3478 1095.6522 21\23
3\34 105.88235 1094.11765 31\34
1\11 109.09 1090.90 10\11
3\32 112.5 1087.5 29\32
2\21 114.2857 1085.7129 19\21
5\52 115.3846 1084.6154 47\52
3\31 116.129 1083.871 28\31
4\41 117.0732 1082.9268 37\41
1\10 120 1080 9\10
4\39 123.0769 1076.9231 35\39
3\29 124.1379 1075.8621 26\29
5\48 125 1075 43\48
2\19 126.3158 1073.6842 17\19
5\47 127.6596 1072.3404 42\47
3\28 128.5714 1071.4286 25\28
4\37 129.729 1070.270 33\37
1\9 133.3 1066.6 8\9
4\35 137.1429 1063.8571 31\35
3\26 138.4615 1061.5385 23\26
5\43 139.5349 1060.4651 38\43
2\17 141.1765 1058.8235 15\17
5\42 142.8571 1057.1429 37\42
3\25 144 1056 22\25
4\33 145.45 1054.54 29\33
1\8 150 1050 7\8
5\39 153.84615 1046.15385 34\39
4\31 154.8387 1045.1613 27\31
7\54 155.5 1044.4 47\54
3\23 156.5217 1053.4783 20\23
5\38 157.8947 1042.1053 31\38
2\15 160 1040 15\17
5\37 162.162 1037.837 32\37
3\22 163.63 1036.36 19\22
7\51 164.7059 1035.2941 44\51
4\29 165.5172 1034.4822 25\29
5\36 166.6 1033.3 31\36
1\7 171.4286 1028.5714 6\7
5\34 176.4706 1023.5294 29\34
4\27 177.7 1022.2 23\27
7\47 178.7234 1021.2766 40\47
3\20 180 1020 17\20
5\33 181.81 1018.18 28\33
2\13 184.6154 1015.3846 11\13
5\32 187.5 1012.5 27\32
3\19 189.4737 1010.5263 16\19
7\44 190.90 1009.09 37\44
4\25 192 1008 21\25
9\56 192.8571 1007.1429 47\56
5\31 193.5484 1006.4516 26\31
6\37 194.594 1005.405 31\37
1\6 200 1000 5\6
6\35 205.7143 994.2857 29\35
5\29 206.8966 993.1034 24\29
9\52 207.6923 992.3077 43\52
4\23 208.69565 991.31435 19\23
7\40 210 990 33\40
3\17 211.7647 988.2353 14\17
8\45 213.3 986.6 37\45
5\28 214.2857 985.7143 23\28
7\39 215.3846 984.6154 32\39
2\11 218.18 981.81 9\11
7\38 221.0526 978.9474 31\38
5\27 222.2 977.7 22\27
8\43 223.2558 976.7642 35\43
3\16 225 975 13\16
7\37 227.027 972.972 30\37
4\21 228.5714 971.4286 17\21
9\47 229.7872 970.2128 38\47
5\26 230.7692 969.2308 21\26
11\57 231.57895 968.42105 46\57
6\31 232.2581 967.7419 25\31
7\36 233.3 966.6 29\36
1\5 240 960 4\5
7\34 247.0588 952.9412 27\34
6\29 248.2759 951.7241 23\29
11\53 249.0566 950.9434 42\53
5\24 250 950 19\24
9\43 251.1628 948.8372 34\43
4\19 252.6316 947.3884 23\19
7\33 254.54 945.45 26\33
3\14 257.1428 945.8571 11\14
8\37 259.459 940.540 29\37
5\23 260.8696 939.1304 18\23
7\32 262.5 937.5 25\32
2\9 266.6 933.3 7\9
9\40 270 930 31\40
7\31 270.9677 929.0323 24\31
12\53 271.6981 928.3019 41\53
5\22 272.72 927.27 17\22
8\35 274.2857 925.7143 27\35
3\13 276.9231 923.0769 10\13
10\43 279.0698 920.9302 33\43
7\30 280 920 23\30
11\47 280.8511 919.1489 36\47
4\17 282.3529 917.6471 13\17
9\38 284.2105 915.7895 29\38
5\21 285.7143 914.2857 16\21
11\46 286.9565 913.0435 35\46
6\25 288 912 19\25
13\54 288.8 911.1 41\54
7\29 289.6552 910.3448 22\29
8\33 290.90 909.09 25\33
1\4 300 900 3\4
9\35 308.5714 891.4286 26\35
8\31 309.6774 890.3226 23\31
15\58 310.3448 889.6552 43\58
7\27 311.1 888.8 20\27
13\50 312 888 37\50
6\23 313.0435 886.9565 17\23
11\42 314.2857 885.7143 31\42
5\19 315.7895 884.2105 14\19
9\34 317.6471 882.3529 25\34
4\15 320 880 11\15
11\41 321.9512 878.0488 30\41
7\26 323.0769 876.9231 19\26
10\37 324.324 875.675 27\37
3\11 327.27 872.72 8\11
11\40 330 870 29\40
8\29 331.0345 868.9655 21\29
13\47 331.9149 868.0851 34\47
5\18 333.3 866.6 13\18
12\43 334.8837 865.1163 31\43
7\25 336 864 18\25
9\32 337.5 862.5 23\32
2\7 342.8571 857.1429 5\7
11\38 347.3684 852.6316 27\38
9\31 348.3871 851.6129 22\31
16\55 349.09 850.90 39\55
7\24 350 850 17\24
12\41 351.2195 849.7805 29\41
5\17 352.9412 847.0588 12\17
13\44 354.54 845.45 31\44
8\27 355.5 844.4 19\27
11\37 356.756 843.243 26\37
3\10 360 840 7\10
10\33 363.63 836.36 23\33
7\23 365.2174 834.7826 16\23
11\36 366.6 833.3 25\36
4\13 369.2308 830.7692 9\13
13\42 371.4286 828.5714 29\42
9\29 372.4138 827.5862 20\29
14\45 373.3 826.6 31\45
5\16 375 825 11\16
11\35 377.1429 822.8571 24\35
6\19 378.9474 821.0526 13\19
13\41 380.4878 819.5122 28\41
7\22 381.81 818.18 15\22
15\47 382.9787 817.0213 32\47
8\25 384 816 17\25
17\53 384.9057 815.0943 36\53
9\28 385.7143 814.2857 19\28
19\59 386.4407 813.5593 40\59
10\31 387.0968 812.9032 21\31
11\34 388.2353 811.7647 23\34
1\3 400 800 2\3
11\32 412.5 787.5 21\32
10\29 413.7931 786.2069 19\29
19\55 414.54 785.45 36\55
9\26 415.3846 784.6144 17\26
17\49 416.3265 783.6735 32\49
8\23 417.3913 782.6087 15\23
15\43 418.60465 781.39535 28\43
7\20 420 780 13\20
13\37 421.621 778.378 24\37
6\17 423.5294 776.4706 11\17
17\48 425 775 31\48
11\31 425.80645 774.19355 20\31
16\45 426.6 773.3 29\45
5\14 428.5714 771.4286 9\14
14\39 430.7692 769.2308 25\39
9\25 432 768 16\25
13\36 433.3 566.6 23\36
4\11 436.36 763.63 7\11
15\41 439.0234 760.9766 26\41
11\30 440 760 19\30
18\49 440.8163 759.1827 21\49
7\19 442.1053 757.8947 12\19
17\46 443.4783 756.5217 29\46
10\27 444.4 755.5 17\27
13\35 445.7143 754.2857 22\35
3\8 450 750 5\8
14\37 454.054 745.945 23\37
11\29 455.1724 744.8276 18\29
19\50 456 744 31\50
8\21 457.1429 742.8571 13\21
13\34 458.8235 741.1765 21\34
5\13 461.5385 738.4615 8\13
17\44 463.63 736.36 27\44
12\31 464.516 735.484 19\31
19\49 465.3061 734.6939 30\49
7\18 466.6 733.3 11\18
16\41 468.2927 731.7073 25\41
9\23 469.5652 730.4348 14\23
20\51 470.5882 729.4118 31\51
11\28 471.4286 728.5714 17\28
13\33 472.72 727.27 20\33
2\5 480 720 3\5
13\32 487.5 712.5 19\32
11\27 488.8 711.1 16\27
20\49 489.7959 710.2041 29\49
9\22 490.90 709.09 13\22
16\39 492.3077 707.6923 23\39
7\17 494.11765 705.88235 10\17
19\46 495.6522 704.3478 27\46
12\29 496.5517 703.4483 17\29
17\41 497.561 702.439 24\41
22\53 498.1132 701.8868 31\53
5\12 500 700 7\12
18\43 502.3256 697.6744 25\43
13\31 503.226 696.7741 18\31
21\50 504 696 29\50
8\19 505.2631 694.7369 11\19
19\45 506.6 693.3 26\45
11\26 507.6923 692.3077 15\26
14\33 509.09 690.90 19\33
3\7 514.2857 685.7143 4/7
16\37 518.918 681.081 21/37
13\30 520 680 17\30
23\53 520.7547 679.2453 30\53
10\23 521.7391 678.2609 13\23
17\39 523.0769 677.9231 22\39
7\16 525 675 9\16
18\41 526.8293 673.1707 23\41
11\25 528 672 14\25
15\34 529.4118 670.5882 19\34
4\9 533.3 666.6 5\9
17\38 536.8421 663.1579 21\38
13\29 537.931 662.069 16\29
22\49 538.7755 661.2245 27\49
9\20 540 660 11\20
23\51 541.1765 658.8235 28\51
14\31 541.9355 658.0645 17\31
19\42 542.8571 657.1429 23/42
5\11 545.45 654.54 6\11
16\35 548.5714 651.4286 19\35
11\24 550 650 13\24
17\37 551.351 648.648 20\37
6\13 553.84615 646.15395 7\13
19\41 556.0976 645.9224 22\41
13\28 557.1429 642.8571 15\28
20\43 558.1395 642.8605 23\43
7\15 560 640 8\15
15\32 562.5 637.5 17\32
8\17 564.7059 635.2941 9\17
17\36 566.6 633.3 19\36
9\19 568.42105 631.57895 10\19
19\40 570 630 21\40
10\21 571.4286 628.5714 11\21
21\44 572.72 627.27 23\44
11\23 573.913 626.087 12\23
23\48 575 625 25\48
12\25 576 624 13\25
25\52 576.9231 623.0769 27\52
13\27 577.7 622.2 14\27
27\56 578.5714 621.4286 29\56
14\29 579.31 620.69 15\29
29\60 580 620 31\60
15\31 580.6452 619.355 16\31
16\33 581.81 618.18 17\33
1\2 600 1\2